MapGarbage
UnrealTournament Editor Add-On Builder

version February 2021
- english excluded from document -

Description:
This 1is an UnrealTournament Editor custom builder tool which operates in
Editor.

Purpose:

Trying to make Editor more smarter than its ameoba intelligence.

Some map fixings/repairs are time consuming and we may also have
glitches. Then if we use a builder like this we do the necessary maneuvers
with a few mouse <clicks, we have enough fixes here for that type of
MonsterHunt game that is constantly brutalized with poor quality maps and for
a game without skills. Of course, we are not just talking about MonsterHunt,
we also have testing and reporting functions for other types of games when we
refer to the navigation network of the studied map or in the manufacturing
process. Another common attribute of this builder it's the ability or attempt
to eliminate duplicate actors which are not the best thing on a map after
copy-paste operations (even stealing assets from other maps). This feature
works or not depending on what kind of actors are duplicated. Actors type
InventorySpot duplicated can cause big problems and 1it's needed "manual
washing" of the map. Another tutorial for this will be another chapter to
discuss.

Operation: (image is older)

File Edit %iew Brush Build Tools Help

D@E e # 1@ F&cle] AN 0N O WG E

— Properties

==l pbed ap MNone
~bDoRemoveTrazh Falze
«bRemover avMetwork Falze
~bRemoveloReachF... Falze
~=bTmFixBadPaths Falze
= MinDiztCheck]

«bChecklUnReachPat... Falze
~bCheckMoPazzes Falze
~bCheckEndBreaks Falze
~bPreM avigaddHck Falze
= bBuildM 2k ebwork, Falze
~~bCountBeachSpec: Falze

~~bCheckFakeSpecs Falze
B T FCalea

By clicking the Right Mouse button on that Glass/TrashCan Icon from
Editor (setup explained later) you can open this Builder.
We have to mark True options which we want to launch and then clicking on
BUILD button shown. Once finished work or if some scroll visual problems from
Editor are showing up (Editor is a trash disregarding what you say anyway),

just close Builder and re-Open it (right c¢lick - in default 0S's mouse
setup) in case that you still need it.

August 2020 Add:

First operation will open the log for printing basic explanations. Some
people cannot get what a builder does and how does it work, expecting builder
to do something without setting up an option to True and then builder won't do
anything.

Explanations for features:

Value Value dependent Explanations:

MyMap - This is main feature auto-completed for detecting map.
If this doesn't happen, name of LevelInfo actor must
be completed manually, eg: LevelInfo3 LevelInfo4 and

SO on.
bDoRemoveTrash - It's similar with Command OBJ GARBAGE
bRemoveNavNetwork - This option will delete Paths-Net for getting a clean

map (requires Save Map, Exit Editor, Re-Open, Re-Load
map) for removing all old references and old
reachspecs still hosted and not used (like
InventorySpot2000) for a future clean build. April
2020 - here you have some bytes cleaned up as well not
only paths are deleted.

bTryFixBadPaths - This option is based on pathing docs by Epic and
ignored by Epic :/ where any NavigationPoint should
have an optimal minimum 50 UU distance from other one
- this is mainly for PathNode class. It will blindly
remove such PathNode closer to other NavigationPoint.
This option will prevent crashing map in game by
removing navigation Network applying tweak and
building Navigation again.

Update September 2020

Minimal distance (using RadiusActors) is now
configurable if we want a different way of paths
simplifications.

bCheckUnReachPaths - This option scans All NavigationPoint Actors in map if
a Bot/Human pawn can reach at their location properly
- ramps checks in stage. Nodes placed too high, even
if have navigation data added based on Scout tester,
they might not be good for Bots. We aim here normal
maps addressing games on the ground not air paths
where creatures flying are using them. However, air
paths are not for ground pawns so they are claimed
UnReachable too. Nodes from water are excepted and
also teleporters without a destination as long as they
might be a destination. Air paths are another chapter,
not a subject to discuss here. Sample of a plain stock
bork is PathNodell2 from CTF-Command, there are more
others but, because of geometry type not all of them
are causing troubles. All what we need is trying to
have a good placement allowing Pawn to reach at Node
Location correctly. Method means a trace from node to
the ground in certain range. If ground is not found,
Node might be too high - method is not very accurate
for all cases but it doesn't hurt a map-check because
it's faster than looking at each Node one by one. So-
called Bad Results are logged.

bPreNavigAdHck - With this option used before starting to add PathNodes
(MANUALLY !!!), we can tweak their properties until
job is being done for making them able to fit in small
spots where Editor can still link them but they don't
fit there for placing - BIG Junks in SMALL holes.
Their look in game is normal by default but... we have
new routes set. Requires Bot Pathing knowledge. Here
we have other placement for InventorySpot Marker
toward inventories not like in default build. This is
triggering actors to reorder and it might get rid of
trash reachSpecs as well.

Update February 2021

After using this option it will go inactive as long as
there is no need to send pre-pathing commads multiple
times unless user needs this for some reason.

bBuildNavNetwork - Similar to command Paths Define used for Constructing
Paths Net using current PathNodes.

Update February 2021

Also it sends a command for Wrapping Actors - not
always helpful combined with other commands, but
wrapping actors helps in getting rid of junk
reachSpecs. I'm also using a button separate for

command "Map SendTo Last" before rebuilding Navigation
Network.

bCountReachSpecs

Explanation from the initial phase. The engine has as
constant in defining the navigation paths 3000
specifications of navigation called ReachSpecs. I am
inclined to believe that these specifications are
about the same in processing a route instigated by a
being/creature/pawn. If the map has more than 3000
ReachSpecs - a larger or more crowded one in
navigation points - it does not surprise me to see the
creatures behaving strangely when they follow a
target, in other words when jumping over the
capacities coded as constants in the engine we do not
have the right reactions while running the game. Some
of these constants crash the game when it passes the
defined limitations, for example Max Points in
rendering operations.

These ReachSpecs are counted, including shortcuts,
these shortcuts are not shown by the Editor in
graphical mode but this builder shows them if we
randomly study some navigation points - we are talking
about maps that have the classic navigation network.
This helps us to simplify navigation a bit, to place
items after processing the navigation, or to simplify
it in various ways to limit ourselves to the value of
3000 ReachSpecs. Until we build a clean network we can
use this builder to destroy the old navigation and
everything in the form of garbage specifications,
saving, shutting down the Editor, reloading and
setting up a navigation network as simple as possible.

bShowSpecs

This is a debugger for paths before to test route in
game. Usually a suspect PathNode might block entire
route for Pawn. If you have a suspect or you are
curious about whatever point how is connected with
nearest Nodes, this feature will report connections
from that node and to that node and navigation
conditions for pawn roamer - should swim, jump, etc.
Default reachFlags are explained in more friendly
format using words, but also with numbers returned,
and an explained legend is logged too for any advanced
examination. Common navigation flags are shown.

bUnLinkNavList

Map's NavigationPointlist is unlinked here. I mean all
NavigationPoint actors are not referencing themselves,
chained, after this task. Why would do that ? Because
you might need to drop InventorySpots added into void,
those items might not need paths connected and were
moved into void for not having paths to/from them. If
network is disconnected it has to be reconnected back.
Next feature is the cleaner in cause. Actually this
task is spread in two pieces because map might have
some coding stuff inside and it will remap everything
how wants dynamically - I expect development here.
ReachSpecs are not affected because Points from void
are not having navigation data after all. After
reconnecting network all Bots and the rest of pawns
should work properly.

bReLinkNavList

Previously disconnected Navigation chain is remapped
out of Navigation Points which are in void and have no
reachSpecs referenced. Yes, network is reduced here.
If you need some points previously moved in void,
don't forget to bring them back if you need them
(SpawnPoint, QueenDest) or they are deleted if are
left in void.

Update September 2020

Navigation Actors having reachspecs, even if are
supposed to be in void (zoning problems) are connected
as long as they have navigation data. If Editor has
created reachSpecs then we cannot leave these away.
Last node in chain will have an increased cost as I
could see in certain stock maps.

bveloTeleporter

- ZVelocity
completed with an usual positive

value 190,

220,

- has to be

ect.

Stock teleporters are automatically set with a
teleporting velocity on Z axis. Purpose is making Bot
to be thrown away for unblocking a teleporter. Usually
in stock team-games a bot might be really annoying
when hangs in teleporter. You can use here even a
kicker for ”Bot” class inside teleporter and with a
smaller radius than teleporter - allow coming in.

bNoPtFromTeleporter

Eh, DevPath is adding a path from a teleporter to
another point than a destination Teleporter - not
those destinations without an URL defined that have to
be connected to next point. What's the deal ? Creature
might figure his road passing through teleporter
without needing of teleporting, similar to a common
PathNode - an outside path - and being kidnapped away
from required road to the target goal, being

teleported inside or thrown away by some swJumpPad -
lol. Cough, we can remove ALL these Out-Of-Destination
paths confusing A.I. by using this feature. Here we
have to look for alternate nodes around or else
creatures will have here a total break. If this is
confusing next update will have a sample picture for
explanations. Technically Teleporters tagged have a
destination purpose and even might be working in two-
way mode, these are by default excepted from tweaking.

bCleanLocBytes - In plain stock Editor, we cannot see everything. There
are bytes with data stored having no purpose for
editing being run-time stuff such as OldLocation. It
surprises me to see these even taking map file length
with less good logic. When I deleted these junks, I
did not see any game impact at all, so I added a
feature for cleaning up to 0.000000 these OldLocation
coordinates x y z, we don't care what was and where in
building stage.
Update February 2021
Option is turned back to False after usage. Also it is
active during Paths Building process fired by this
builder in order to cleanup junk data left behind
pathing process, after cleanup task option is reverted
back to False - turned off.
bFindXBrushes - I wrote this feature which might be helpful at a
moment. I found maps having two the same cubed
brushes, or even more in the same spot without helping
with anything, just making map more bigger. We can
have different brushes in the same spot, of course,
but we do care only about similar ones such as 5
portals as water surface. I won't add map-names...
bRemoveBullshit - It was pretty much "fascinating" to see new "mappers"
using Commanders and player types added in map with no
single purpose and neither any LOGIC. This command
will find these useless actors and perform their
removal.
bRemoveMonsters - For some default match which might go messy with
creatures added in map, this option will remove all
Pawns. Addressing normal DM and CTF map fixes. You
don't have to look where the nasty creature is, you
can push button and builder will do the task for you.
bCullTextures - This operates similar to command Texture Cull, but
without writing it in Console after ending mapping
work.
bTweakMHMovers bTweakMoverGroup Used in MH Maps and doing what default mutators are
Is adding a Group for some doing with movers and even more... Ideas of messing up
Movers - requires restart/reload |maps are a lot so this is fine tuning not an entire
and activating new Groups fix.
created. Movers set for some group will need browsing groups,
bDoPawnOpenMover refreshing and activating them, else you won't see
Makes Movers Accessible by any Movers.
Pawn except Mission Critical
ones with bTriggerOnceOnly set.
bBadTrgMoverFix
Some Mission related Movers are
set TriggerControl creating dumb
errors when are linked with
Dispatchers and other stuff, a
mess which we can fix, AND MAYBE
FINALLY LEARNING THESE AFTER 20
YEARS. ..
bNoGrabMoverCheat
Cannot be something more
annoying than looking at a Bot
or a Player opening a critical
door without to do the job in
cause first - by CHEATING, 1lol,
originally USELESS added by Epic
reye poking:
bTweakMHFactory bChkMHFactAttack Some mappers think that Monster is Bot or such brain-

This Factory can work as a
Trigger (if you don't have a
clue about this feature), while
Factory can be touched nasty by
a monster - the rest of items
spawned are pushed in combat
against another maybe the same
monster type - lousy battling -
by using this, we make a factory
to get a start only by Player
types, preventing monsters to do
a mess.

sh!t so we have badly messed up settings. We are about
to solve all 2 stock Factories screwed with a normal
setup... Enhancements might be welcomed...

bXCPostNavHck

Simple feature that can recover Inventories lost from

their InventorySpots after repeated using
XC_PathBuilder which seems to mess them up after a
second XC type paths build in whatever XC version -
This is part of XC Engine if you have heard of it...
Hint ! By using this feature even if everything is
normal you can restore cylinder collisions for items
which were screwed as another option. This feature is
used in rare cases and it needs advanced actor editing
stuff for figuring if bug has been encountered else
it's not needed.

Update September 2020

In certain editing cases we might want to do this
check in boths ways InvSpot vs Item and Item vs
InvSpot. When Items are temporary moved for pathing
tweaks they need to be back and CONNECTED. Builder
will help here. Certain ammo won't open in UGold and
they can be gone from InvSpot references at returning
in UT. This option can be useful to bring back cross
references Ammo-InvSpot.

bBoostAmmo3X - Discarding regenerators "rule", this map might have a
game play as it is, however, because stuff for MH
battling might be a lot, ammo from map might have a 3X
load and 3 times faster default RespawnTime (if you
know what the heck is about, if not - read mapping
tutorials !!! And learn stuff after years of doing
TRASH)
bFixFallingAmmmo - Ammo placed in map in some adjusted higher spot and
which are falling due to their properties are adjusted
to stay in spot as in design requests without to fall.
bHideSpriteActors - Actors having Sprite type diplay (lights, triggers,
etc) are going to be set for not being shown - purpose
is to look at map closer to how do it looks in game.
We are taking in account default set ones not
customized ones.
bUnHideSpriteActors - Actors previously "hidden" are going to be shown back.
bReplaceActor ReplaceType Wheew ! Self explanatory... This is able to replace
Typing Actor's Class Name something selected from map with another thing (that
exactly, and Editor will has to be loaded first in Editor !!!). As a sample, we
complete it... Actor that needs |can replace a nasty PupaeWarrior having errors with a
replaced. default one letting admins to do the usual server
tunning. A lot of actors are suitable for this task

WithType including one from MyLevel with other from MyLevel.
Using a class from a package
previously loaded typing class
name, also Editor will complete
entire class definition for
Actor used as replacement for
above one.

bSPawnTweaks MaxHealthAllowed This is pointed to ScriptedPawn types - monsters. In
Separate feature for removing random moments of checking stuff, you'll find dumb
4,000,000 Health from whatever settings done at monster properties, might be hard to
Dinosaur from whatever "joke" check each monster one by one. These settings might go
type mapping idea. very unhealthy for a game-server. You can adjust a few
Must specify value or else it of them (or more).
will cap to 100,000 by default.

bNoRotateWeapon ChangedRespawn Pretty useful for mapper who wants Weapons to stay

As an add-on, we can define
RespawnTime for weapons, visible
when server/game is being set
with bWeaponStay False - I'm not
gonna explain 2 pages what is
about. ..

without rotating. Some of those turds were screwing up
things making mutators to get messy and even the game-
play, because they have no clue about Editor and
UScript anyway.

bTrySolveLocation

Addressing common actors mapped which are intended to
stay in space using FIXED values for their X,Y,Z
Location in 3D space rather than floating numbers
which are involving additional bits for no purpose.
It's a sort of align to grid using 1 UU as scale.
Update September 2020

We do have small reporting about how much could be
moved and how much was already in the same place -
already fixed.

Hint: those actors a bit pushed into ground and set
with bCollideWorld might be relocated correctly over
ground. For me this is helpful at relocating PathNodes
in lowered Locations, all having the same height from
ground and by adjusting collisions for all, then using
this later for locking them in fixed places.

bRoundCylinder

Again a feature for fixed values rather than floating
ones for actors. Some decorations, Queen as sample
might use those X.999967 things for their collision
cylinder and are really pointless for processing
collisions. Collision is rounded to a nearby integer
value, there is nothing messed up here.

bReportActors

This feature will print in Editor.log file all actors
used in Level + how many they are. If you known bad
packages with screwed up Actors you can track log and
then searching for those added in Map and deleting
them once located.

bCheckItems

This feature is used for testing how are placed
Inventories in map, for a DM map if items are in walls
or such, InventorySpot is not added and that's not a
target for Bots. Then builder will try to adjust their
location and logging this action. If builder did not
solved problem, you can track evil stuff by checking
log.

First check is detecting in default technology, will
work in order to gain InventorySpot over Inventory, if
not, will try by shrinking tester pawn somehow like
DevPath does. If it's not successfull, it will be
reported accordingly.

Scout didn't fit - is a message for a bad inventory
which might be detected by this builder.

Majority of maps are working somehow using shrinking
and Editor can map paths here, but they can be RED
paths in such case. Builder is enough accurate at this
point predicting paths (recommending this usage before
building paths) as a debugger for preventing more
junks in map based on multiple builds.

bHidePlStarts

HolelLength - value for hidding
into ground of those buggers in
order to not be mapped as valid

paths. I'm using 9000
or, depending on map.

or less
And should

stay the same for next command
done after pathing map.

This feature might be used when map has a high load in
a spot - more NavigationPoint type actors which might
cause ugly pathing bugs. This is addressing
PlayerStart - for MH takes in account SpawnPoints
(aerial placement has no purpose) also QueenDest used
by Queen type monster and being part of navigation
array but they won't have paths as long as are burried
into ground at predefined distance - see parameter.
This has to be done BEFORE BUILDING PATHS. Next
feature will bring back buggers after - to do after
creating paths if this feature was used before.

bRestPlStarts

HoleLength - the same
unhidding from ground
buggers. It should be
with previous command

value for
of those
the same
unless

those points are going bugged

remaining into wvoid.

This does the reversal action of previous feature
described above. By using both of them in the same
time mainly no visible action will occur. These are
two different things. It uses the same value declared
for recovering from ground of hidden stuff. Restoring
points in original Location will be done AFTER
BUILDING PATHS. If PlayerStarts are forget into void,
map will be unplayable so here your logic has the
word. Out of logic = A Junk UNR file, not MAP.

So, when this feature is True, previous should be
False and viceversa.

Stages are as follows: Hide points buggers (above
command), create paths, Unhide points buggers (current
command) . This builder has all needed features toward
removing paths and building paths, so everything is
doable from builder toggling values True/False.

bStaticsReport

This feature will track actors from map if are badly
messed up by various "creative" ideas intended to be
cool but ruining net play as long as map will not be
the same as off-line, which means that a basic check
for borks it's addressing actors bStatic and bNodelete
if are screwed up, so called edited aka mindlessly
ruined. Actor original bStatic screwed up as movable
won't be EVER seen in client, else a weapon set
bStatic for no rotation will do sucks with mutators
and such. Builder here will find borks reporting them
and then you can roll back evilized actors to original
stage and doing the right setup. MapGarbage has a
feature mentioned before for locking weapons rotation
in a friendly format and not noob style.

bScanCTFAltPaths

This is a check addressing CTF maps for AlternatePath
actors - usually map has a better A.I. play if it do
includes such things. Also it's a good thing if they
are balanced well. All info will be logged.

Update September 2020

AlternatePaths are reported in games including four
teams. Textures are toggled only for teams 0 1.

bSimAltPathPicking

aTeam - this is specification
for which Team is tested

AlternatePath picking.

Here we have a CTF simulator in how a Bot might pick
an AlternatePath after Re-Spawn or not picking one. It
uses a similar code from CTF controller adapted into
builder. A single check is done by pressing build
button once, with this option set. Each time when
build button is pressed we are simulating a Bot
respawned picking such thing like it does in a CTF
match so if you want to check what is about definitely
build button has to be pressed many times. I think
this feature will except good minutes spent testing a
CTF map in run-time. In Editor, in a single minute you

might figure how are sorted AlternatePath actors.
Another test would be when Bot is flag carrier but
that thing has to be implemented first. Probably these
tests are way pretty conclusive.

bRemoveNoReachPaths

This option removes from the navigation points the
items listed as visible and inaccessible paths by
creatures that cannot fly to reach them and who do not
have any navigation specifications not even if they
could fly, these points may have directives to reach
the current point, but the current point has no
reachSpecs for reaching them. I have successfully
removed these references and I have had no problem,
maybe I just got a smaller map talking about the size
on disk. April 2020 - other bytes from network will be
removed, previous Unreal Editors did not even use
these and maps are working. As for those poorly pathed
that's another story...

Recommendation for manual paths tweaking.

Use this option if you are doing major changes with
PathsLinker builder. Map should not use old internal
extra chained references. You can save an alternate
copy and check if something went wrong. ALL time a new
navigation point added will need to be chained in main
NavigationPointlist and reachspecs data added, but
other internal references at Uscript Level won't
match. By removing junks nothing goes damaging unless
you do damage yourself by deleting nodes and leaving
reachSpecs referencing them.

bCheckDuplicates

bRemoveDuplicates - this is a
sub-option for check and will
cause attempting a removal of
duplicated actors.

Checking map for duplicated actors - for me those maps
are not healthy. This is a different option, you will
want to take in account GreenNote about this option.
After cleanning Actors with a dedicated Tag, these
will have to be checked because builder does a reset
at these ex-duplicated actors. Events connected to
these actors must be examined because cleaning task
it's based on working with Tags which are defaulted
after cleaning work.

bPurgeDupes?2

Used for a direct cleaning in a fresh loaded map. This
is an alternate cleaning solution - written a bit
different. Here Actors cleaned will have default Tag
like when mappers have added them. If these are
connected to some Events you have to re-edit the Tag
accordingly.

bScanTeamStarts

Can be used for CTF maps for checking how many
PlayerStart actors are assigned for each team in order
to balance start locations. Results are logged - see
console log.

Update September 2020

We have a report for more than two teams but, textures
are toggled only for common two teams 0 1.

Update February 2020

Fixed detection Active/Inactive team based.

bFindVoidBuggers

It causes a report toward actors placed into void
which have no usage that way - items,
navigationpoints, lights, decorations, etc. Note that
not everything placed into void is wrong. Triggers,
Keypoints, AmbientSounds are not having/causing issues
here unless are really far away from game ground for
no reason, only loading map with junk actors. This is
based on iLeaf data.

bcheckZones

This will look if map has zoning problems, it shows
when two or multiple ZoneInfo actors are in the same
zone because map has leaks or has a bad setup.

bDisconnectN1toN2

- N1 N2 - parameters being
NavigationPoint's names for the
path that has to be nulified.
Must be defined or else nothing
will be done.

- bGetlstNl - helper for auto-
completing selected node as N1;
- bGet2ndN2 - helper for auto-
completing selected node as N2.
During time when helpers are
used, main deconnector should
stay False. First we are
completing N1 and N2 and THEN we
disconnect them. These are
optional helping toward speed
operation.

As shown in name, the path going from NavigationPointl
to NavigationPoint2 will be removed from Paths list
and UpStreampaths. This is addressing those paths
making a bad angle with a ledge and closer to a wall
where Bot has problem or jumping is causing loops.
ReachSpec exist in map but is removed from navigation
like in the case of TranslocDest done via stock
UScript. We can use this option for Lift Combos where
bot is jumping and takes a lot of damage restricting
him from using that down-way - eg. Disconnecting Path
from a LiftExit to a LiftCenter and Bot will go only
from LiftCenter to LiftExit because reversal is
nulified. More explained in BlueNote.

Auto completing might have a later reaction due to GUI
structures - see note below table.

bScanDefences

Performing a check for Team-Games specific maps in
order to count defensepoint actors - how many they are
for each team. Option will assign some textures
visible to these actors for being well visible. By

using this option again, they are reverted back to
default texture.

Update September 2020

We have logs for all team colors - 4 teams but
textures are toggled only for two teams. Even in
MultiCTF games we might want to check map balance.

bStaticDecos

Some maps have destructible decorations set to static.
These usually create fragments that abuse the engine
operation because once set to bStatic, they are not
removed and continue to produce fragments. In order
not to ruin the look and the idea, we stabilize these
SELECTED decorations and marked bStatic = True by
transforming them into blockers that do not cause any
problems, being customized exactly as the original
decoration and removing it from the stage. So we
dispose of the garbage made by these altered
decorations.

Since May 2020 decorations out of bStatic can be also
morphed into non-spam actors.

bDoKickSound

An easy as a pie task for some kicker, not really for
multiple kickers in one spot, geniuses. You can use
ONE kicker with collision adjusted. This will map for
you that Jump Sound doing all setup for a selected
kicker. And no, we do not need any Trigger, Kicker is
capable to do an Event itself without external
support, Jjust look at the damn code... it's english
not birdisch language.

bShowCharCodes

Might be needed some coding helper for certain
characters. It shows char code 0-255 and symbol
accordingly - logged.

bFindMapReachSpecs

This feature is an attempt (good to me) at showing
mainly ALL reachSpecs which a map might have - happens
after repeated not needed builds, leaving a lot of
junk data, structures which Editor won't show unless
you are deleting paths and log will report how many
reachspecs were eliminated. Here things are different
from previous feature because we don't see only
referenced in nodes reachspecs, we can have a clue
about all reachspecs. If it's a big map when this is
used I recommend hidding log or else it takes time to
render everything. If this process is crashing Editor,
this means that map has evil bytes left.

Starting with August 2020, code here was a bit
adjusted because I found ugly things in certain maps
speaking about references from reachSpecs. These could
crash Editor and... depending on how much is corrupted
map-file, this stunt can be a crusher. However,
logging works and we can have a clue about map's
charge. Log Window is closed if it was open during
this check because logging hundreds of reachSpecs
takes ages. After finishing the task if Editor is
alive it will open Log Window itself.

bLevelLinks

It would have been one of commands, mythological in
the UT Editor, meant to show map links to other
servers or locations by reporting the URL from a
Teleporter.

bLevelValidateMap

The same myth type as above but it would do a check
for an empty Level - lol. PlayerStart-s and their
usage, Map's Title. Perhaps this would be a must-have.
This is a sort of reality for that never working
command, but at UScript Level.

Starting with August 2020 here are done basic checks
at TrapSpringer actors (if mappers have a clue about
using them) and also if map uses a DistanceLightning
which is crapped up in Net Games. It is recommended
replacing it with other stuff for servers. I wrote
such a Lightning fully functional.

bLevelFix

Another myth which refers at fixing some SoundRadius -
I don't now if prior versions of Editor were borked at
this point allowing dumb things to get thrown in map.
Perhaps this has no use in this environment but it
doesn't hurt being added.

bFindAnActor

- ActorClass - name of class
which we want found, counted and
selected;

- ActorTag — name of Tag used by
Actors and/or class if specified
to be selected and counted.

At least one of these must be
defined.

I wrote this for figuring if exist whatever class,
else if exist a number of actors having a specified
common tag. By example SpawnPoint actors used in
MonsterHunt for a CreatureFactory it's pointless if it
goes at more than 16 per factory - n0OOb mapping.

Here are selected All Actors matching class and tag or
only tag or only class specified and also they are
counted and result logged. Here you can simply count
PathNodes or whatever actors with or without to
specify a tag.

Update June

2020

bCheckNavChain

When some map is developing a funky navigation crash
or it doesn't seems to work even if it's not
oversized, it worth a check if all navigation points
are connected into a navigation chain known as
NavigationPointList. If map is nothing like a special
one (with dynamic stuff embedded) this linked list
should be there with everything connected. If not, map
it's screwed up - no worries there are mappers/non-
mappers/fake mappers not knowing exactly what they do
at random.

bCheckFakeSpecs

Alternate check if everything does looks fine but it's
not. Some duplicated navigation actor might hold wvalid
reachSpecs but original one it's missing creating a
breach, with a fake NavigationPointList.

Update July

2020

bReplaceltems

- NewItem - an Inventory
subclass defined as name for
selection replacement

Selected Item(s) subclass of Inventory can be replaced
here with NewItem defined as class-name eg: ripper
without quotes or anything if NewItem is defined and
bool set to True then hitting Build button. This is
not exactly a raw replacement, it will copy
relationship with InventorySpot in maps pathed, which
usually needs some manual work around using advanced
actor editing, and then rebuilding paths might be
damaging for custom tweaking. It will make Bots to
recognize new replaced item exactly as it was the
original old item.

bDownLights

- IfMoreThan - byte field, max
255 for possible values

- AdjustTo - the same

- RadiusBigger - the same

- RadiusAdjust - the same

If map has bugging powerful lightning we can demand
all lights to be put down as follows:

- Any light with brightness bigger than value
IfMoreThan will have value AdjustTo.

- Any light having LightRadius bigger than value
RadiusBigger will be adjusted to RadiusAdjust.

Eg: 250 and 180 - everything bigger than 250 will have
180 - in a single BUILD click.

Update Augus

t 2020

bH1pAddActor

- NearbyActor - An actor defined
as class-name eg. SpecialEvent,
which is added around a selected
actor from map at X Y
coordinates, Z being
configurable using...;

- ZPos — defined Z difference at
New Actor placed near the
selected one(s)

This option is used for adding another actor nearby
selected one, where the type of new added one must be
specified and also an optional height difference. By
example we can add a SpecialEvent to a Trigger located
in map leaving place for selecting them later one by
one, we don't need to put them exactly in the same
place, so we can use Z difference in UU (UnrealUnits).
These are not connected Event-Tag as long as they can
be different types with different purposes.

bAddInvSpot

- InvSpot - a custom subclass of
an InventorySpot which can be
connected as valid point using
builders for tweaking paths,
like PathsLinker or

XC _EditorAdds from XC_EngineV24;
- InvSpHeight - Height
difference (UU) on Z axis
between Inventory and
InventorySpot class added.

If we have a map where a new weapon or item is added
post pathing and custom tweaking and we don't need to
ruin the previous work, we can map for this item
automatically connected MyMarker-MarkedItem a plain
InventorySpot class or... a custom one having whatever
properties - item must be selected. All advanced
editing is not necessary, builder does the relation
between item and Navigation Point in a blink, these
properties are not normally visible for editing but
they can be seen using Advanced Actor Editing.

Sample Commands: EditActor Name="RocketPackl2”
EditActor Name="InventorySpot29”

To keep in Mind: Node is added but it will need to be
chained in NavigationPointlist - builder can do these
unlink>re-link things, here are needed also paths
to/from this new navigation actor, PathsLinker in
UGold can do these connections by generating user
defined reachSpecs.

bScriptHNode

Script Generators - more in Yellow Notes

Generates in Log a compilable script for a HuntNode,
subclass of PathNode. Can be used successfully in
MonsterHunt, but it requires compiling the script
which is recommended without MonsterHunt package
loaded. Original MonsterHunt won't help in compiling
assets and then you might want an external package
ready compiled and imported for usage. Advanced
mappers are the main audience here.

bScriptPathSwitch

Generates in Log a compilable script for a
PathsSwitcher subclass of BlockedPath that must be
compiled as well. It toggles paths when triggered and
it should not have shortcut paths over it.

bScriptBotJumper

Generates in Log a compilable script subclass of
Triggers aiming Bot. Stock Jumper class is aiming
Monsters, Bot won't react at that thing. If your Bot
needs to jump in some funky geometry stuff, this
trigger can be very useful. Usually where paths are a

bit forced and Bot has problems, a trigger working
with a small delay is a jewel. This one can be turned
off/on triggered, if situation requires this action.

bLoadAMyLevel

- APackageName - here you need
to mention filename.extension
which will be morphed into a
MyLevel package for being mapped
in current session. Example:
swJumpPad.u

Note: Classes which are not used
are lost from map. In next
mapping session you won't have
them available any more and
later if you want these, package
will need to be reimported.

According to custom scripts that are compiled in
packages aiming MyLevel, this option will operate
importing command for map's MyLevel - the pseudo-
package which belongs to map itself not as an external
package.

Any known file by UT located inside UT and defined in
Paths can be loaded and morphed in MyLevel, Textures
Sounds, etc.

Builder won't load anything which cannot be found in
Sand-Box aka UT install path. I did not tried another
drive or external path.

bAdvActorEdit

There are commands for opening properties for certain
actor. We do not need to write stories in console, we
are selecting target actor for editing and we use this
bool set to True followed by BUILD button. It opens
actor properties based on Name used by actor not based
on class definition.

Actually builder is writing a ConsoleCommand like
this: EditActor Name="PathNodeO”. That's why PathNode0
must be selected. One actor at time.

This way you can see if a NavigationPoint has junks or
it doesn't have connections, you can adjust PrePivot
of a FlagBase, etc.

bCheckNoPasses

It does a check in Navigation Network testing if there
are elements without any incoming path, being One Way.
The deal is that not everything in stage is damaging
or critical, but in a CTF map such a FlagBase has all
chances to not be visited by Bots very soon, unless
map has all sort of craps around Flag and the FlagBase
is touching a Bot by mistake or viceversa. In other
case a PathNode in a tunnel or small area if is a
point important in a route, if it doesn't have any
incoming paths it might be a break point, Bots not
following that way. Such sample maps are a lot but I
won't nominate UNR Bot trashes here. In MonsterHunt
where SpawnPoints are higher for Gasbags, technically
these are not a big problem, but I found some modified
map where such a point was breaking Bot attack
(original was working well - the edited one was ruined
not edited), because that SpawnPoint has generated a
broken route without having any incoming path. We can
examine map and focusing on Log instead of scrolling
for finding buggers.

A to do ?

Perhaps in future I'll do a report for supposed
EndPoints. Such Node usually has a single incoming
path. Bot coming here for some reason will never
return into Paths-Net - it's a rare thing but it
happens. Definitely a Weapon placed in a deeper hole
can cause such a scenario.

bDoTagMovers

This can be... a rare need. If Movers from a messed up
map are not having anything with paths and they need
to be tagged and you are getting tired of developing
names, movers having default tags are going to be
tagged with unique Tags that can be easily copied at
their combos for LiftTag values.

Update September 2020

bGridPlacement

GridSize x y z - optional grid
size - current grid can be
ignored and used a custom one.

Selected actors are snapped at grid using value
defined or... not defined but auto-detected.

Here we are talking about properties of selected
actors, world collision and placement collision. They
have to be decollided or else might not be snapped at
grid. This can be used where certain actors must be at
grid with any matter. Brushes are not an exception.

bScriptMyLink

Generates in Log a compilable script for a MyLink
subclass of Teleporter causing forced paths that must
be compiled as well. When Editor won't connect certain
Paths these actors can do that if Pawn roamer can
follow this way or else map will have an impossible to
follow path during run-time.

bAdjAProperty

theProperty - a property name
theValue - desired new value

Selected actors which needs to have certain properties
where Editor doesn't allow editing and they need
advanced editing that can be changed at once. By
example InitialState for whatever actor that usually
cannot be edited normally.

bCheckEndBreaks

Nothing needs to be selected here. Map will have a
basic check at combos of type LE-LC-LE which some
people are not understanding making LE-LC and causing
useless break-points as long as a LiftCenter and

subclasses won't get any link forward to a PathNode
because it needs the second Exit (or Entry), this
being the minimal charge for a combo and not other
way. The check means that if LiftCenter has a private
LiftTag defined - even if is connected with a very
nearby mover-lift and doesn't have only two reachSpecs
linked to a single LiftExit type - that's
wrong/incomplete. Results are logged. We can have
Paths mapped manually but here is about a poor number
of reachSpecs (two pieces) connected to the same point
- wrong pathing. Pawn is accepted for navigation if
has a sum of reachspecs connected until the searched
goal location, without gaps. Of course this check
won't find all bugs which geniuses are doing but...
it's better than nothing and it works faster than for
a manual check of combos from map.

Update October 2020

bCheckSpawnRotation

It does a check through PlayerStart type actors.
PlayerStarts turned with face at walls and having
default rotation while are facing wall are reported.
RocketArena mutators and similar ones with
”splashdamage” weapons might do damage at player
spawned On-Line when fire command reacts delayed and
there is no spawn protection. Beside this... I think
spawning with Face at Wall is TRASH in all ways, nOObs
should learn mapping. First thing for player fresh
spawned should be environment/design and not a stupid
wall.

b2ExchgPlaces

All it does it's exchanging places for two selected
actors. Actor A goes to Actor's B Location and Actor B
goes to Actor's A location. In certain cases there are
needed moving Actors elsewhere, We are adding
something temporary, we are exchanging places and we
are deleting temporary actor — no need to keep in mind
X,Y,Z coordinates. However by exchanging places for
two Inventories post-pathing this will mess up the
link with InventorySpot connected. Sometimes if we
have a manual pathing work we don't want the all
previous work ruined by rebuilding paths. As result
Next feature will recover the link with nearest
selected InventorySpot where an Inventory was moved.
Item moved has to be connected with a nearby
InventorySpot.

bLinkExchgItem

If an Inventory has exchanged place with other one, we
can link ONE exchanged Inventory with ONE
InventorySpot - both of them selected. For the second
Inventory and InventorySpot will be needed the same
operation - Selecting them and connecting them with
this option. Note: Default InventorySpot class in
Editor is invisible. Make sure you know what you do or
else better rebuild paths if you think that something
is wrong. This is an advanced option which I needed
post-pathing and post-paths-tweaking, it might be too
complicated for some people.

bDoComboLinks

Almost self-explanatory, Lift combos with or without a
Lift in stage for being recognized and not mapped
crapped up paths through walls and impossible to
follow routes, have to be marked with a common LiftTag
(advanced mappers know what is that). Instead of
inventing names or whatever duplicates causing issues,
we are selecting these ALWAYS THREE or more navigation
combo actors engaged for that combo place (and THE
LIFT if exists) then we are using this option for
generating a name for future pathing links. It's
unique as long as map doesn't have duplicated actors
or whatever - other TRASH more exactly. This feature
was added in latest UT469 patch but... that one has an
option for a custom defined LiftTag. I don't think
it's even needed wasting time with naming actors, it's
irrelevant. Builder will use a string based on first
seen selected Actor-Name and a suffix ” MG”. All combo
elements are tagged this way and we don't care how do
they sound like, we need final paths to be logically
connected.

Of course, it works out of Lifts for JumpSpots,
TranslocDest, etc. and similar subclasses generating
unique names for future links into selected combos.

As it can be noticed, this should be done before
building paths. Yes, this option is for those mappers
knowing what is map's navigation, not for everyone.

bLoadStockTex

It loads majority of stock textures (not player skins
and other skins), this is doable before to start
mapping in order to have everything from stock
available without inspecting Browser and opening a
texture all the time.

Cave At: After loading textures, if they cannot be
seen yet in Textures Browser, you have to trigger
browser to refresh textures/packages. I'm using
”ToggleDockStatus” button pressed twice: undock -
dock.

Editor has a slow reaction at GUI elements especially
where it did not worked at anything, new elements are
not updated instantly - not even in 227.

I think are more handy a few clicks for loading stock
assets than X clicks for each texture loaded separate.
Option is turned OFF after use - logically we don't
need to load twice stock textures.

Update November 2020

bLiftTrigger

Builder will add a Trigger for a Lift when a
navigation point for said Lift is selected. A trigger
might be needed for calling Lift from a top position
in order to get down without jumping, falling and
taking damage. In such a case usually are needed two
triggers Top Bottom for moving lift. Trigger will be
Tagged automatically but collision for trigger will
need a check for potential desired changes. Mover-Lift
will be set to TriggerOpenTimed as InitialState.

bNoOverCrowded

- FreeSpotSize - radius for
checking multiple PathNodes

Builder will do a CleanUp - Paths must be rebuild
after this. When more PathNodes are charged for no
reason in a small area, this insanity can have a
cleaning option here by picking a free radius in UU
which must be free between two PathNodes. Example 120,
after this task any PathNode will have minimum 120 UU
from other PathNodes. I wrote this because not in a
single map I found such a trash. These nodes
overcrowding area causes default DevPath to setup
funky loops and they aren't useful. This option is a
blind task, it will need an examination for preventing
unwanted effects where map is really requiring more
PathNodes so it is advisable not using a big cleaning
range. I'm using to keep at least 60 UU minimum
between PathNodes as much as possible. Inventories
around are already generating charges. Code probably
will be modified in future updates for making this
option more efficient.

bGetTargTeleporter

- TheTeleporter - AutoCompleted
when Teleporter target is
selected or it can be written
manually and option won't need
to be used, but next option will
be required.

This option works as first step before next one
establishing a future connection between two
teleporters before building paths. It generates a Tag
for a selected teleporter which will be autocompleted
— used as Destination. This option is not needed if
variable <TheTeleporter> is manually completed - the
name of actor Teleporter is required here. It's easier
and handy to allow builder for capturing Teleporter as
variable for Destination instead of writing it
manually.

bLinkThisTeleporter

- Requires a selected Teleporter
which will get connected to
TheTeleporter.

Another Selected single Teleporter will be set as
Source for previous Destination manually set or
autocompleted with previous option. These two
teleporters can be also connected in reverse (bi-
directional) by doing similar steps with teleporters,
select the Destination - Build, select Source - Build.
URL for Source Teleporter will match the Tag for
Destination if everything was done correctly. I'm
using this option as a quicker linking method because
I don't want to put names at Teleporters. DevPath
doesn't need Human words after all.

- various code updates at Pla
- some spelling changes

Update December-2020

yerStarts counting

- January-2021

bUnLinkSelecPoints

Function is addressing one or more Navigation Points.
If we want these out of navigation chain because they
do not have paths or we deleted paths (reachSpecs) we
can prepare these for being removed by unlinking them
from navigation chain but keeping the rest of chain
untouched if map has some zoning issues and we don't
want to rebuild chain completely. We select the node,
then we are using this option for being unlinked.
Previous node and next node are going referenced each-
other leaving out selection.

bLinkSelecPoints

This function does the reversal of previous. We can
add a new PlayerStart for Navigation chain without
rebuilding paths if we don't want more reachSpecs.
PlayerStart chained will follow teaming rules and
enabled/disabled settings otherwise games are
iterating for finding a start spot with any matter.
This option can be used even as tester if a Navigation
Point is already chained or it was added and forgot in
the wild. This way we are iterating a lot of times and

then we don't want to add hundreds of points at once,
it might crash Editor. Points are added only if
another Navigation Actors are found nearby, linked and
not far at more than 1600 UU for being compatible with
navigation if in next moments some reachSpecs are
going to be defined (U227 has this feature through
PathLinker builder). I wrote this when I forgot
something and I had to add it post paths tweaking and
I did not wanted to repeat the whole tweaking work.

bDelVoidBuggers - This comes nearby bFindVoidBuggers (working together)
option for deleting some of these actors having no
purpose into void such as Lights or PathNodes -
nothing goes there... This is recommended if map has
the right zoning or else it will do damage by removing
normal actors. Usually 227 might be funky with zones
and then it's advisable to do a simple check first
leaving this False. If map has no issues with other
actors and actors from void are indeed into void and
useless, this option will remove them - only several
classes and not everything as long as a map might use
certain decorations and stuff passing through wvoid.
Lights out of custom tags, Inventories, Navigation
Actors are candidates for being removed automatically.

Update February - 2021

bCheckLoadedSpots - LoadPercent - $ reachSpecs This option shows which nodes have defined percent
percent loaded Navigation Actors |charge with reachSpecs - I'm checking 60%. In the most
of cases these loaders are not helping in open areas,
nodes around can be linked each-other without these
loads which can be removed and paths-net rebuilt. Goal
is examining loads causing a high ammount of
reachSpecs and which can be discarded/removed. You can
have a clue which items can be reduced pre-pathing and
added back Post Pathing for preventing overcrowded
paths.

bCheckMultipleActors - Surprisingly, I did not see only duplicated actors
named identically, I also could see TWO sniperrifles
as a sample, in the same location, same rotation,
everything was the same but indeed having different
names. Two weapons in the same place are only
generating spam paths with Zero length reachSpecs -
there is no logic at all for such things.

Builder is recommending rebuilding map and/or paths if
here have been removed certain actors logging which
ones, their destruction will occur by default. If you
want to keep those junks, don't save map after using
this option and reload everything again. As sample,
here I removed paths first and then checked map only
with main actors out of navigation data. Items
duplicated have been deleted reducing more than 300
reachSpecs after creating a new paths-net.

Misc. Reactions:

Builder 1like other ones might not have a quick GUI update especially
where values are auto-completed/removed, Editor is focusing usually where you
do mouse-clicks. By any matter values that are supposed to be auto-completed
must be checked with a click on that field/variable. Don't forget that Log
Window can be resized not like builder's one.

GreenNote:

bCheckDuplicates is addressing to perform a check into whatever Level for
duplicated actors. After this check Editor has to be closed without saving
map. This happens because behind this check you might have some Tags changed
and you don't want any modification here - this was a strategy in hunting
duplicated actors because they are really Evil in several cases. If builder
has logged duplicated actors you might record some names of duplicated actors
before cleaning them, Eg: Brush740.

Cleaning task: Editor restarted, map opened, builder set to True for both
these bools bCheckbDuplicates and bRemoveDuplicates and push build button. At
end of task (if Editor is alive) SaveAs map with another name (using suffix
~healed or such). Close Editor and restart it, load map cleaned and look for
those Actors recorded like Brush740. This way I used because Evil duplicated
might go in deletion stage after a supposed cleaning done in multiple steps.
When map 1is saved like that you might see those duplicates wvanished at next
load, gone for good. That's why cleaning must be done in this contest in a

single move and fresh loaded map for preventing unwanted deletions. Product
resulted should have other name saved immediately in order to keep original
map if builder has failed the cleaning task. As an EndNote I used this builder
to check a crusher map with said 68 Duplicated Actors -

Search for Actors

MNames Filter

Brush 74 A MName : |Bn_|sh?-ﬂ 4":105&

Brush 740 —
Brush740 Event |
Brush 741 Tag |
Brush741 CRAPS =0

Brush 742
Brush 742
Brush 743
Brush743
Brush 744
Brush 745
Brush 746
Brush 746
Brush 747
Brush 748 _i.
Brush 745 W

In cleaned map you are supposed to open advanced properties for such an
old duplicated actor by writing in console something like in sample below

editactor name="Brush740"
if nothing happens, then said example Brush740 is gone, or if you can see it
in map definitely it might be bDeleteMe and it will be lost soon (by copy-
pasting it into a text editor you can see what I mean) - happens if you check
and clean and re-clean map multiple times in the same editing session. If you
don't want to screw up actors, clean a fresh loaded map and save it as a
temporary map. If temporary map reloaded in another fresh session 1s good,
then cleaning was successfull. Once again, make sure about a copy of evil map,
if you fail cleaning perhaps an alternate solution might help - manual washing
MAP in TEXT format.

Note: Version February 2020 might do some clean-up using any of both
methods in the same editing session, if this is a problem, try the clean work
described.

As for cleaning duplicates, you will need log window open and you can
repeat pressing build button until log is delivering a message tagged with
MapInGoodState. This might be needed in maps having more than two duplicates
of the same actor - even counting them it's not accurate. These are iterators,
I think 41it's better than nothing. However, I recommend a refresh after
cleaning map, like saving a copy of map, closing everything and opening Editor
again. Iterations operated here vs duplicated actors I'm not sure how stable
are leaving Editor which is far from having needed sanity checks - you have to
keep this in mind and refresh your working process.

BlueNote:

There are more maps where you can see a Bot moving around an edge and
hitting a wall, nothing happens in next minutes than retrying such a retarded
move because path declared there is claimed navigable, but it's not when it
goes 1in that angle with edge. Starting from now on this builder is capable to
remove such a path referenced in navigation network closing that route and
making Pawn to follow another way instead of constantly messing up in spot.
The simple way 1is to take in account named here Nodel and Node2 aka N1 and N2.
It will be a single path removed, that one from N1 to N2 leaving Path from N2

to N1 untouched - but which can be disconnected later, if it does exists. All
it needs 1is bool variable set to True and completing Names (under object
property for these) of said two nodes - Editor will complete entire definition

in the two TextBoxes. Log will say what reachSpec was there and removal
action. Path-Line still can be seen because reachSpec is not removed from map

but reference from nodes was removed as natively 1is doing TranslocDest in
games that do not include translocator. This option can definitely remove any
path direction and this way being capable to do real One-Way routes, for high
lifts where moron Bot is dying by jumping, etc, etc. Editor is not so friendly
with One-Way paths causing more or 1less PrunedPaths - shortcuts - which is
very stupid. If mapper wants a One-Way path he might have reasons for that -
builder does help here. For stock maps and plain servers solution would be a
Server-Actor helper in order to not screw stock maps but tweaking them in run-
time. I cannot say that bad reachSpec reference cannot be removed manually
when we are working at our map (some special case ?) but it's way easier to
record two names, writing them, hitting button and... Jjob done. Left
reachSpecs listed in navigation node are wrapped/defragmented after removing
the evil one.

May-June 2020 info: This feature implemented in builder PathsLinker done
in the same time addressing UGold227 (tested h) version, has the completed
feature at this chapter - it's really deleting evil reachSpec without any
recovery rewrapping/recounting all remaining reachSpecs. In this case map must
have actors compatible with UGold or else editing will be impossible. For MH
stage it's advisable some knowledge which MH actors must be removed and saved
elsewhere as text data, or else map won't load in UGold Editor, and adding
them back post editing/tweaking. MyLevels here need knowledge about "How To",
certain things are moved in 227 versions and not having any compatibility with
UT. Such MyLevel must be adapted with common codes. Example bTwoWay wvariable

different from UT to U227 - NavigationPoint wvs AlternatePath, and here code
needs GetPropertyText, SetPropertyText functions or such, UT had modifications
which are not 1in Unreal but later newer BotPack had them added... not

everything is 100% UT compatible over there anyway...

Any sort of script private for current loaded map addressing MyLevel must
be written and COMPILED.

4 Unreal Egl i itic -[=]x]

File Edit Vier
File ‘iew Class - ’ .
Testures | Groups ActorCIasseslsoundg|Mus,.< v ﬁ@ FFTFF |—
B

B e

v Actor classes only New Class
& HUD B

- Info

Wo———————— F—————-

7 Inventory Farent: Triggers
£ Keypoint
- Light

[
£
[
B
B Menu
B
[
[

Package: IMyLeva\ Cancel

Mame: IBUl_Jumperl

]

- M avigationPaoint |

£ Pawn -
- Projectile New Class

- ShareSoundz

wi

Info

[ﬁ"wnm Farent: Triggers 0K
RO Package: MEM—___ Cancel
- ¥C_I Edit Script... Mame: M

I

x| Default Properties...

[T vy

] BotPack -
] Core
[D300 r

[[] DaeworBuilders
[DavesBrushBuilders
] Editar

[Engine

] ExpEM_E ditar
[ExtendedBuilders

OPC NS

—
9_‘%!

Sagroes

f—
04

=

&
O

ikl al

. B EHl: &R

If compiling returns errors due to some borked assets loaded in Editor,
uncompiled actor is not helping in any way. At bottom of Scripting Window the
result must be something like this...

‘i Class MyLevel.Bot_Jumper =10 x|

File Tools

5| Sl R| Hla| &

Bot Jumper

war () int Jum

funiction Timer ()
{
if { Pending != No Pending.Health = £
5 idden Per ampr [Pen o PHYTES_Falling

Success: Compiled 90 line[s], 13 statement(s].

For MH mappers it's advisable to compile and add new actors in map BEFORE
using original MonsterHunt package, or using a clean compiled MonsterHunt.
Situation 1s the same with other things that are ruined on purpose for
preventing devs to compile anything referenced at them.

In order to compile/create a new class scripted by builder, you need to
right-click on actor class which is parent (Triggers - here), choosing New,
writing as Package MyLevel and class Bot Jumper. Now the script from Log
Window can be COPY-PASTE-d into Blue Scripting Window opened for new class.
Lines having "//" slashes and label for deletion can Dbe removed for not
causing extra bytes loaded - you can even adjust code from Log as you need.
After having script copied we need to compile it. The compilation result must
be a Success, otherwise it wasn't compiled. Do not compile/create any stuff
dedicated to UT in UGold or whatever other game than UT.

The Info Piece: Current builder can be compiled, but not using plain UT
stock. This stock has a NO Deal with certain constants which are not a big
problem if are turned in variables and allowing to change wvalues as Editor
does itself and C++ native functions embedded in UT. Not everything must be a
variable but some of these were... brain-farts against development.

Setup for Editor:

U File goes to System folder, bmp icon file goes to editorres Folder from
System (inside UT game used for modding) or whatever internal UT path for U
files. After these file handling operations, proceed to edit
UnrealTournament.ini file (default install). We have to find Section involving
EditPackages, and adding after all those definitions a new one:

EditPackages=MapGarbage

like in this sample fragment:

EditPackages=TarquinBrushBuilders
EditPackages=RahnemBrushBuilders
EditPackages=DavesBrushBuilders
EditPackages=ExtendedBuilders
EditPackages=XC Core
EditPackages=XC_Engine
EditPackages=XC EditorAdds
EditPackages=MapGarbage

That's all, if vyour Editor 1is not badly screwed, you might see icon

involved for working with new builder - vyes, this 1is a custom so called
BrushBuilder but it doesn't do any Brush Building. The above task is not
required when we had a previous version installed - logically, the builder is
already configured.

Post Notes:

Note 1): Advanced mappers probably don't need such tool - or they do
because it's a debugger and helper.
Note 2): For uninstalling process, follow Installing steps in reverse.

Notes 3): Copyrights - All time I was "fascinated" about some Copyrights
for an utter GARBAGE called Map Editor aka whatever Map Editing app. For me

that is a toillete type application but it's needed in mapping - :/.
Given some said MapPurger done by Gizzy I was doing a similar thing for my
needs - and here it 1is, because I was reading about some ReplaceActor feature
mentioned in a description (FALSE Information) but which never existed... and
coding solution is similar.

Note 4): Enhancements and adds - Edit this tool and use it as you like...
a button pressed it's faster than editing actors.

Note 5): Some Update might come as needed - it won't mismatch anything.

This is a tool for help editing Maps, not for Servers/Players so I'm not gonna
spread 100 builder name types because are not needed multiple records but a
single advanced one it's always welcomed.

Note 6) This 1is not a mapping tutorial, neither a MH related one, but
it's a helper. If you have mapping experience not cube-drawing only, you might
understand the purpose of this tool and how does it helps. If you don't know
what Editor does having your mind into a complete fog, forget this tool. It is
addressing to help mapping not for learning mapping.

Note 7) All builder specific features used in the same time are proving
your insanity. All iterations and functions might go in opposite direction as
first thing, and then iterations limit will crash your Editor. Each function
of builder should be taken in account what it does and what it doesn't do.

Note 8) If builder has too many features you don't have to use all of
them or even to use builder after all. You can spend 2 years in Editor
"mapping" whatever UNR file which later goes messed up by too much creativity.
I witnessed such instances and I won't give names - yes, it happened not a
single time.

Credits: In order of appearance: Epic, Mappers from Epic (with their
funky pile of crap) I tested pathing add-ons in such Levels, Gizzy sampling
such builder and "How To", Higor adding some light to my brain, Barbie helping
me to translate numbers in words, team updating old Unreal to whatever v 227
showing me that fly reachFlag can be used in UT but UT Editor is too dumb for
this planet, various UT mappers making me to write such tools which are
facinating even after 20 vyears demonstrating how much they have "learn",
Buggie joined at UT99.org, demonstrating experience and intelligence.

Misc: I was informed that for MH fixes or nasty bugs detections there are
way too many factors in account. Perhaps future version will have more options
if worth efforts. Why ? Intention from now days 1s to go over engine
boundaries and making more sh!t maps or creating more copies of the same trash
and then for such works there are not too many things doable - to not forget
stripping brushes and leaving a pile of crap called map, bugged and making
fixing harder.

Perhaps some of these features are not needed in future (UT469) or they
won't work - or several "fixes" will spit out warnings, clearly this was done
and used in common UT Editor.

As an Extra-Feature, I loaded this builder in Editor from UnrealGold
updated at version 227h and 227i. It looks operational, here I will do extra-

testing another time, main purpose it's UT Editor.

