MapGarbage
UnrealTournament Editor Add-On Builder

version June 2020
- english excluded from document -

Description:
This is an UnrealTournament Editor custom builder tool which operates in
Editor.

Purpose:

Some map fixings/repairs are time consuming and we may also have
glitches. Then if we use a builder 1like this we do the necessary maneuvers
with a few mouse <clicks, we have enough fixes here for that type of
MonsterHunt game that is constantly brutalized with poor quality maps and for
a game without skills. Of course, we are not just talking about MonsterHunt,
we also have testing and reporting functions for other types of games when we
refer to the navigation network of the studied map or in the manufacturing
process. Another common attribute of this builder it's the ability or attempt
to eliminate duplicate actors which are not the best thing on a map after
copy-paste operations (even stealing assets from other maps). This feature
works or not depending on what kind of actors are duplicated. Actors type
InventorySpot duplicated can cause big problems and 1it's needed "manual
washing" of the map. Another tutorial for this will be another chapter to
discuss.

Operation:

File Edit “iew Brush Build Tools Help

MHone
Falze
Falze
Falze
BT mFisE adPathz Falze
bPret avigdddHck Falze
BB uildM avMetwaorl, Falze
bCountReachSpecs Falze
bShowSpecs Falze
bl nLinkM avwList Falze

bReLinkMawvList Falze

bveloT eleporter Falze
Ehelocity 0.000000 _I

Rhl AP raraT alamarkar . Falea

By clicking the Right Mouse button on that Glass/TrashCan Icon from
Editor (setup explained later) you can open this Builder.

We have to mark True options which we want to launch and then clicking on
BUILD button shown. Once finished work or if some scroll visual problems from
Editor are showing up (Editor is a trash disregarding what you say anyway),
just close Builder and re-Open it (right c¢lick - in default 0S's mouse
setup) in case that you still need it.

Explanations for features:

Value Value dependent Explanations:

MyMap - This is main feature auto-completed for detecting
map. If this doesn't happen, name of LevellInfo actor
must be completed manually, eg: LevelInfo3 LevelInfo4

ect.
bDoRemoveTrash - It's similar with Command OBJ GARBAGE
bRemoveNavNetwork - This option will delete Paths-Net for getting a clean

map (requires Save Map, Exit Editor, Re-Open, Re-Load
map) for removing all old references and old
reachspecs still hosted and not used (like
InventorySpot2000) for a future clean build. April
2020 - here you have some bytes cleaned up as well
not only paths are deleted.

bTryFixBadPaths - This option is based on pathing docs by Epic and
ignored by Epic :/ where any NavigationPoint should
have an optimal minimum 50 UU distance from other one
- this is mainly for PathNode class. It will blindly
remove such PathNode closer to other NavigationPoint.
This option will prevent crashing map in game by
removing navigation Network applying tweak and
building Navigation again.

bCheckUnReachPaths - This option scans All NavigationPoint Actors in map
if a Bot/Human pawn can reach at their location
properly - ramps checks in stage. Nodes placed too
high, even if have navigation data added based on
Scout tester, they might not be good for Bots. We aim
here normal maps addressing games on the ground not
air paths where creatures flying are using them.
However, air paths are not for ground pawns so they
are claimed UnReachable too. Nodes from water are
excepted and also teleporters without a destination
as long as they might be a destination. Air paths are
another chapter, not a subject to discuss here.
Sample of a plain stock bork is PathNodell2 from CTF-
Command, there are more others but, because of
geometry type not all of them are causing troubles.
All what we need is trying to have a good placement
allowing Pawn to reach at Node Location correctly.
Method means a trace from node to the ground in
certain range. If ground is not found, Node might be
too high - method is not very accurate for all cases
but it doesn't hurt a map-check because it's faster
than looking at each Node one by one. So-called Bad
Results are logged.

bPreNavigAdHck - With this option used before starting to add
PathNodes (MANUALLY !!!), we can tweak their
properties until job is being done for making them
able to fit in small spots where Editor can still
link them but they don't fit there for placing - BIG
Junks in SMALL holes. Their look in game is normal by
default but... we have new routes set. Requires Bot
Pathing knowledge. Here we have other placement for
InventorySpot Marker toward inventories not like in
default build.

bBuildNavNetwork - Similar to command Paths Define used for Constructing
Paths Net using current PathNodes.

bCountReachSpecs - Explanation from the initial phase. The engine has as
constant in defining the navigation paths 3000
specifications of navigation called ReachSpecs. I am
inclined to believe that these specifications are
about the same in processing a route instigated by a
being/creature/pawn. If the map has more than 3000
ReachSpecs - a larger or more crowded one in
navigation points - it does not surprise me to see
the creatures behaving strangely when they follow a
target, in other words when jumping over the
capacities coded as constants in the engine we do not
have the right reactions while running the game. Some
of these constants crash the game when it passes the
defined limitations, for example Max Points in

rendering operations.

These ReachSpecs are counted, including shortcuts,
these shortcuts are not shown by the Editor in
graphical mode but this builder shows them if we
randomly study some navigation points - we are
talking about maps that have the classic navigation
network. This helps us to simplify navigation a bit,
to place items after processing the navigation, or to
simplify it in various ways to limit ourselves to the
value of 3000 ReachSpecs. Until we build a clean
network we can use this builder to destroy the old
navigation and everything in the form of garbage
specifications, saving, shutting down the Editor,
reloading and setting up a navigation network as
simple as possible.

bShowSpecs

This is a debugger for paths before to test route in
game. Usually a suspect PathNode might block entire
route for Pawn. If you have a suspect or you are
curious about whatever point how is connected with
nearest Nodes, this feature will report connections
from that node and to that node and navigation
conditions for pawn roamer - should swim, jump, etc.
Default reachFlags are explained in more friendly
format using words, but also with numbers returned,
and an explained legend is logged too for any
advanced examination. Common navigation flags are
shown.

bUnLinkNavList

Map's NavigationPointlist is unlinked here. I mean
all NavigationPoint actors are not referencing
themselves, chained, after this task. Why would do
that ? Because you might need to drop InventorySpots
added into void, those items might not need paths
connected and were moved into void for not having
paths to/from them. If network is disconnected it has
to be reconnected back. Next feature is the cleaner
in cause. Actually this task is spread in two pieces
because map might have some coding stuff inside and
it will remap everything how wants dynamically - I
expect development here. ReachSpecs are not affected
because Points from void are not having navigation
data after all. After reconnecting network all Bots
and the rest of pawns should work properly.

bReLinkNavList

Previously disconnected Navigation chain is remapped
out of Navigation Points which are in void and have
no reachSpecs referenced. Yes, network is reduced
here. If you need some points previously moved in
void, don't forget to bring them back if you need
them (SpawnPoint, QueenDest) or they are deleted if
are left in void.

bveloTeleporter

- ZVelocity
completed with an usual positive

value 190,

220,

- has to be

ect.

Stock teleporters are automatically set with a
teleporting velocity on Z axis. Purpose is making Bot
to be thrown away for unblocking a teleporter.
Usually in stock team-games a bot might be really
annoying when hangs in teleporter. You can use here
even a kicker for ”Bot” class inside teleporter and
with a smaller radius than teleporter - allow coming
in.

bNoPtFromTeleporter

Eh, DevPath is adding a path from a teleporter to
another point than a destination Teleporter - not
those destinations without an URL defined that have
to be connected to next point. What's the deal ?
Creature might figure his road passing through
teleporter without needing of teleporting, similar to
a common PathNode - an outside path - and being
kidnapped away from required road to the target goal,
being teleported inside or thrown away by some
swjumpPad - lol. Cough, we can remove ALL these Out-
Of-Destination paths confusing A.I. by using this
feature. Here we have to look for alternate nodes
around or else creatures will have here a total
break. If this is confusing next update will have a
sample picture for explanations. Technically
Teleporters tagged have a destination purpose and
even might be working in two-way mode, these are by
default excepted from tweaking.

bCleanLocBytes

In plain stock Editor, we cannot see everything.
There are bytes with data stored having no purpose
for editing being run-time stuff such as OldLocation.
It surprises me to see these even taking map file
length with less good logic. When I deleted these
junks, I did not see any game impact at all, so I
added a feature for cleaning up to 0.000000 these
OldLocation coordinates x y z, we don't care what was
and where in building stage.

bFindXBrushes - I wrote this feature which might be helpful at a
moment. I found maps having two the same cubed
brushes, or even more in the same spot without
helping with anything, Jjust making map more bigger.
We can have different brushes in the same spot, of
course, but we do care only about similar ones such
as 5 portals as water surface. I won't add map-
names. ..

bRemoveBullshit - It was pretty much "fascinating" to see new "mappers"
using Commanders and player types added in map with
no single purpose and neither any LOGIC. This command
will find these useless actors and perform their
removal.

bRemoveMonsters - For some default match which might go messy with
creatures added in map, this option will remove all
Pawns. Addressing normal DM and CTF map fixes. You
don't have to look where the nasty creature is, you
can push button and builder will do the task for you.

bCullTextures - This operates similar to command Texture Cull, but
without writing it in Console after ending mapping
work.

bTweakMHMovers bTweakMoverGroup Used in MH Maps and doing what default mutators are

Is adding a Group for some doing with movers and even more... Ideas of messing
Movers - requires restart/reload |up maps are a lot so this is fine tuning not an
and activating new Groups entire fix.
created. Movers set for some group will need browsing groups,
bDoPawnOpenMover refreshing and activating them, else you won't see
Makes Movers Accessible by any Movers.
Pawn except Mission Critical
ones with bTriggerOnceOnly set.
bBadTrgMoverFix
Some Mission related Movers are
set TriggerControl creating dumb
errors when are linked with
Dispatchers and other stuff, a
mess which we can fix, AND MAYBE
FINALLY LEARNING THESE AFTER 20
YEARS. ..
bNoGrabMoverCheat
Cannot be something more
annoying than looking at a Bot
or a Player opening a critical
door without to do the job in
cause first - by CHEATING, lol,
originally USELESS added by Epic
reye poking:
bTweakMHFactory bChkMHFactAttack Some mappers think that Monster is Bot or such brain-
This Factory can work as a sh!t so we have badly messed up settings. We are
Trigger (if you don't have a about to solve all 2 stock Factories screwed with a
clue about this feature), while |normal setup... Enhancements might be welcomed...
Factory can be touched nasty by
a monster - the rest of items
spawned are pushed in combat
against another maybe the same
monster type - lousy battling -
by using this, we make a factory
to get a start only by Player
types, preventing monsters to do
a mess.

bXCPostNavHck - Simple feature that can recover Inventories lost from
their InventorySpots after repeated using
XC PathBuilder which seems to mess them up after a
second XC type paths build in whatever XC version -
This is part of XC Engine if you have heard of it...
Hint ! By using this feature even if everything is
normal you can restore cylinder collisions for items
which were screwed as another option. This feature is
used in rare cases and it needs advanced actor
editing stuff for figuring if bug has been
encountered else it's not needed.

bBoostAmmo3X - Discarding regenerators "rule", this map might have a
game play as it is, however, because stuff for MH
battling might be a lot, ammo from map might have a
3X load and 3 times faster default RespawnTime (if
you know what the heck is about, if not - read
mapping tutorials !!! And learn stuff after years of
doing TRASH)

bFixFallingAmmmo - Ammo placed in map in some adjusted higher spot and
which are falling due to their properties are
adjusted to stay in spot as in design requests
without to fall.

ijxieSE)riJ:eAcﬂ:ors - Actors having Sprite type diplay (lights, triggers,

etc) are going to be set for not being shown -

purpose is to look at map closer to how do it looks
in game. We are taking in account default set ones
not customized ones.

bUnHideSpriteActors - Actors previously "hidden" are going to be shown
back.

bReplaceActor ReplaceType Wheew ! Self explanatory... This is able to replace
Typing Actor's Class Name something from map with another thing (that has to be
exactly, and Editor will loaded first in Editor !!!). As a sample, we can
complete it... Actor that needs |replace a nasty PupaeWarrior having errors with a
replaced. default one letting admins to do the usual server

tunning. A lot of actors are suitable for this task

WithType including one from MylLevel with other from MyLevel.
Using a class from a package
previously loaded typing class
name, also Editor will complete
entire class definition for
Actor used as replacement for
above one.

bSPawnTweaks MaxHealthAllowed This is pointed to ScriptedPawn types - monsters. In
Separate feature for removing random moments of checking stuff, you'll find dumb
4,000,000 Health from whatever settings done at monster properties, might be hard to
Dinosaur from whatever "joke" check each monster one by one. These settings might
type mapping idea. go very unhealthy for a game-server. You can adjust a
Must specify value or else it few of them (or more).
will cap to 100,000 by default.

bNoRotateWeapon ChangedRespawn Pretty useful for mapper who wants Weapons to stay

As an add-on, we can define
RespawnTime for weapons, visible
when server/game is being set
with bWeaponStay False - I'm not
gonna explain 2 pages what is
about. ..

without rotating. Some of those turds were screwing
up things making mutators to get messy and even the
game-play, because they have no clue about Editor and
UScript anyway.

bTrySolveLocation

Addressing common actors mapped which are intended to
stay in space using FIXED values for their X,Y,Z
Location in 3D space rather than floating numbers
which are involving additional bits for no purpose.
It's a sort of align to grid.

bRoundCylinder

Again a feature for fixed values rather than floating
ones for actors. Some decorations, Queen as sample
might use those X.999967 things for their collision
cylinder and are really pointless for processing
collisions. Collision is rounded to a nearby integer
value, there is nothing messed up here.

bReportActors

This feature will print in Editor.log file all actors
used in Level + how many they are. If you known bad
packages with screwed up Actors you can track log and
then searching for those added in Map and deleting
them once located.

bCheckItems

This feature is used for testing how are placed
Inventories in map, for a DM map if items are in
walls or such, InventorySpot is not added and that's
not a target for Bots. Then builder will try to
adjust their location and logging this action. If
builder did not solved problem, you can track evil
stuff by checking log.

First check is detecting in default technology, will
work in order to gain InventorySpot over Inventory,
if not, will try by shrinking tester pawn somehow
like DevPath does. If it's not successfull, it will
be reported accordingly.

Scout didn't fit - is a message for a bad inventory
which might be detected by this builder.

Majority of maps are working somehow using shrinking
and Editor can map paths here, but they can be RED
paths in such case. Builder is enough accurate at
this point predicting paths (recommending this usage
before building paths) as a debugger for preventing
more junks in map based on multiple builds.

bHidePlStarts

HoleLength - wvalue for hidding
into ground of those buggers in
order to not be mapped as valid
paths. I'm using 9000 or less
or, depending on map. And should
stay the same for next command
done after pathing map.

This feature might be used when map has a high load
in a spot - more NavigationPoint type actors which
might cause ugly pathing bugs. This is addressing
PlayerStart - for MH takes in account SpawnPoints
(aerial placement has no purpose) also QueenDest used
by Queen type monster and being part of navigation
array but they won't have paths as long as are
burried into ground at predefined distance - see
paramater. This has to be done BEFORE BUILDING PATHS.
Next feature will bring back buggers after - to do
after creating paths if this feature was used before.

bRestPlStarts

HoleLength - the same value for
unhidding from ground of those
buggers. It should be the same
with previous command unless

This does the reversal action of previous feature
described above. By using both of them in the same
time mainly no visible action will occur. These are
two different things. It uses the same value declared

those points are going bugged
remaining into void.

for recovering from ground of hidden stuff. Restoring
points in original Location will be done AFTER
BUILDING PATHS. If PlayerStarts are forget into wvoid,
map will be unplayable so here your logic has the
word. Out of logic = A Junk UNR file, not MAP.

So, when this feature is True, previous should be
False and viceversa.

Stages are as follows: Hide points buggers (above
command), create paths, Unhide points buggers
(current command) . This builder has all needed
features toward removing paths and building paths, so
everything is doable from builder toggling values
True/False.

bStaticsReport

This feature will track actors from map if are badly
messed up by various "creative" ideas intended to be
cool but ruining net play as long as map will not be
the same as off-line, which means that a basic check
for borks is addressing actors bStatic and bNodelete
if are screwed up, so called edited aka mindlessly
ruined. Actor original bStatic screwed up as movable
won't be EVER seen in client, else a weapon set
bStatic for no rotation will do sucks with mutators
and such. Builder here will find borks reporting them
and then you can roll back evilized actors to
original stage and doing the right setup. MapGarbage
has a feature mentioned before for locking weapons
rotation in a friendly format and not noob style.

bScanCTFAltPaths

This is a check addressing CTF maps for AlternatePath
actors - usually map has a better A.I. play if it do

includes such things. Also it's a good thing if they

are balanced well. All info will be logged.

bSimAltPathPicking

aTeam - this is specification
for which Team is tested
AlternatePath picking.

Here we have a CTF simulator in how a Bot might pick
an AlternatePath after Re-Spawn or not picking one.
It uses a similar code from CTF controller adapted
into builder. A single check is done by pressing
build button once, with this option set. Each time
when build button is pressed we are simulating a Bot
respawned picking such thing like it does in a CTF
match so if you want to check what is about
definitely build button has to be pressed many times.
I think this feature will except good minutes spent
testing a CTF map in run-time. In Editor, in a single
minute you might figure how are sorted AlternatePath
actors.

Another test would be when Bot is flag carrier but
that thing has to be implemented first. Probably
these tests are way pretty conclusive.

bRemoveNoReachPaths

This option removes from the navigation points the
items listed as visible and inaccessible paths by
creatures that cannot fly to reach them and who do
not have any navigation specifications not even if
they could fly, these points may have directives to
reach the current point, but the current point has no
reachSpecs for reaching them. I have successfully
removed these references and I have had no problem,
maybe I just got a smaller map talking about the size
on disk. April 2020 - other bytes from network will
be removed, previous Unreal Editors did not even use
these and maps are working. As for those poorly
pathed that's another story...

bCheckDuplicates

bRemoveDuplicates - this is a
sub-option for check and will
cause attempting a removal of
duplicated actors.

Checking map for duplicated actors - for me those
maps are not healthy. This is a different option, you
will want to take in account GreenNote about this
option. After cleanning Actors with a dedicated Tag,
these will have to be checked because builder does a
reset at these ex-duplicated actors. Events connected
to these actors must be examined because cleanning
it's bases on working with Tags which are defaulted
after cleaning work.

bPurgeDupes?2

Used for a direct cleaning in a fresh loaded map.
This is an alternate cleaning solution - written a
bit different. Here Actors cleaned will have default
Tag like when mappers have added them. If these are
connected to some Events you have to re-edit the Tag
accordingly.

bScanTeamStarts

Can be used for CTF maps for checking how many
PlayerStart actors are assigned for each team in
order to balance start locations. Results are logged
- see console log.

bFindVoidBuggers

It causes a report toward actors placed into void
which have no usage that way - items,
navigationpoints, lights, decorations, etc. Note that
not everything placed into void is wrong. Triggers,

Keypoints, AmbientSounds are not having/causing

issues here unless are really far away from game
ground for no reason, only loading map with junk
actors.

bcheckZones

This will look if map has zoning problems, it shows
when two or multiple ZoneInfo actors are in the same
zone because map has leaks or has a bad setup.

bDisconnectN1toN2

- N1 N2 - parameters being
NavigationPoint's names for the
path that has to be nulified.
Must be defined or else nothing
will be done.

- bGetlstNl - helper for auto-
completing selected node as N1;
- bGet2ndN2 - helper for auto-
completing selected node as N2.
During time when helpers are
used, main deconnector should
stay False. First we are
completing N1 and N2 and THEN we
disconnect them. These are
optional helping toward speed
operation.

As shown in name, the path going from
NavigationPointl to NavigationPoint2 will be removed
from Paths list and UpStreampaths. This is addressing
those paths making a bad angle with a ledge and
closer to a wall where Bot has problem or jumping is
causing loops. ReachSpec exist in map but is removed
from navigation like in the case of TranslocDest done
via stock UScript. We can use this option for Lift
Combos where bot is jumping and takes a lot of damage
restricting him from using that down-way - eg.
Disconnecting Path from a LiftExit to a LiftCenter
and Bot will go only from LiftCenter to LiftExit
because reversal is nulified. More explained in
BlueNote.

Auto completing might have a later reaction due to
GUI structures - see note below table.

bScanDefences

Performing a check for Team-Games specific maps in
order to count defensepoint actors - how many they
are for each team. Option will assign some textures
visible to these actors for being well visible. By
using this option again, they are reverted back to
default texture.

bStaticDecos

Some maps have destructible decorations set to
static. These usually create fragments that abuse the
engine operation because once set to bStatic, they
are not removed and continue to produce fragments. In
order not to ruin the look and the idea, we stabilize
these SELECTED decorations and marked bStatic = True
by transforming them into blockers that do not cause
any problems, being customized exactly as the
original decoration and removing it from the stage.
So we dispose of the garbage made by these altered
decorations.

Since May 2020 decorations out of bStatic can be also
morphed into non-spam actors.

bDoKickSound

An easy as a pie task for some kicker, not really for
multiple kickers in one spot, geniuses. You can use
ONE kicker with collision adjusted. This will map for
you that Jump Sound doing all setup for a selected
kicker. And no, we do not need any Trigger, Kicker is
capable to do an Event itself without external
support, just look at the damn code... it's english
not birdisch language.

bShowCharCodes

Might be needed some coding helper for certain
characters. It shows char code 0-255 and symbol
accordingly - logged.

bFindMapReachSpecs

This feature is an attempt (good to me) at showing
mainly ALL reachSpecs which a map might have -
happens after repeated not needed builds, leaving a
lot of junk data, structures which Editor won't show
unless you are deleting paths and log will report how
many reachspecs were eliminated. Here things are
different from previous feature because we don't see
only referenced in nodes reachspecs, we can have a
clue about all reachspecs. If it's a big map when
this is used I recommend hidding log or else it takes
time to render everything. If this process is
crashing Editor, this means that map has evil bytes
left.

bLevelLinks

It would have been one of commands, mythological in
the UT Editor, meant to show map links to other
servers or locations by reporting the URL from a
Teleporter.

bLevelValidateMap

The same myth type as above but it would do a check
for an empty Level - lol. PlayerStart-s and their
usage, Map's Title. Perhaps this would be a must-
have. This is a sort of reality for that never
working command, but at UScript Level.

bLevelFix

Another myth which refers at fixing some SoundRadius
- I don't now if prior versions of Editor were borked
at this point allowing dumb things to get thrown in
map. Perhaps this has no use in this environment but
it doesn't hurt being added.

bFindAnActor

- ActorClass - name of class
which we want found, counted and

I wrote this for figuring if exist whatever class,
else if exist a number of actors having a specified

selected; common tag. By example SpawnPoint actors used in
- ActorTag - name of Tag used by |MonsterHunt for a CreatureFactory it's pointless if
Actors and/or class if specified|it goes at more than 16 per factory - n00b mapping.

to be selected and counted. Here are selected All Actors matching class and tag
At least one of these must be or only tag or only class specified and also they are
defined. counted and result logged. Here you can simply count

PathNodes or whatever actors with or without to
specify a tag.

Update June 2020

bCheckNavChain _ When some map is developing a funky navigation crash
or it doesn't seems to work even if it's not
oversized, it worth a check if all navigation points
are connected into a navigation chain known as
NavigationPointList. If map is nothing like a special
one (with dynamic stuff embedded) this linked list
should be there with everything connected. If not,
map it's screwed up - no worries there are
mappers/non-mappers/fake mappers not knowing exactly
what they do at random.

bC}KgckEyikeSExgcs Alternate check if everything does looks fine but
it's not. Some duplicated navigation actor might hold
valid reachSpecs but original one it's missing
creating a breach, with a fake NavigationPointList.

Misc. Reactions:

Builder 1like other ones might not have a quick GUI update especially
where values are auto-completed/removed, Editor is focusing usually where you
do mouse-clicks. By any matter values that are supposed to be auto-completed
must be checked with a click on that field/variable.

GreenNote:

bCheckDuplicates is addressing to perform a check into whatever Level for
duplicated actors. After this check Editor has to be closed without saving
map. This happens because behind this check you might have some Tags changed
and you don't want any modification here - this was a strategy in hunting
duplicated actors because they are really Evil in several cases. If builder
has logged duplicated actors you might record some names of duplicated actors
before cleaning them, Eg: Brush740.

Cleaning task: Editor restarted, map opened, builder set to True for both
these bools and and push build button. At
end of task (if Editor is alive) SaveAs map with another name (using suffix

or such). Close Editor and restart it, load map cleaned and look for
those Actors recorded like Brush740. This way I used because Evil duplicated
might go in deletion stage after a supposed cleaning done in multiple steps.
When map is saved like that you might see those duplicates wvanished at next
load, gone for good. That's why cleaning must be done in this contest in a
single move and fresh loaded map for preventing unwanted deletions. Product
resulted should have other name saved immediately in order to keep original
map if builder has failed the cleaning task. As an EndNote I used this builder
to check a crusher map with said 68 Duplicated Actors -

Search for Actors

Mames Filter

Brush 74 | Name: [Brush74 M

Brush 740 —
Brush740 Evert |
Brush 741 Tag : |
Brush741 CRAPS 29

Brush 742
Brush 742
Brush 743
Brush743
Brush 744
Brush 745
Brush 746
Brush 746
Brush 747
Brush 748 _i.
Brush 745 W

In cleaned map you are supposed to open advanced properties for such an
0old duplicated actor by writing in console something like in sample below

editactor name="Brush740"
if nothing happens, then said example Brush740 is gone, or if you can see it
in map definitely it might be bDeleteMe and it will be lost soon (by copy-
pasting it into a text editor you can see what I mean) - happens if you check
and clean and re-clean map multiple times in the same editing session. If you
don't want to screw up actors, clean a fresh loaded map and save it as a
temporary map. If temporary map reloaded in another fresh session 1is good,
then cleaning was successfull. Once again, make sure about a copy of evil map,
if you fail cleaning perhaps an alternate solution might help - manual washing
MAP in TEXT format.

Note: Version February 2020 might do some clean-up using any of both
methods in the same editing session, if this is a problem, try the clean work
described.

As for cleaning duplicates, you will need log window open and you can
repeat pressing build button until log 1is delivering a message tagged with
MapInGoodState. This might be needed in maps having more than two duplicates
of the same actor - even counting them it's not accurate. These are iterators,
I think it's Dbetter than nothing. However, I recommend a refresh after
cleaning map, like saving a copy of map, closing everything and opening Editor
again. Iterations operated here vs duplicated actors I'm not sure how stable
are leaving Editor which is far from having needed sanity checks - you have to
keep this in mind and refresh your working process.

BlueNote:

There are more maps where you can see a Bot moving around an edge and
hitting a wall, nothing happens in next minutes than retrying such a retarded
move because path declared there is claimed navigable, but it's not when it
goes 1in that angle with edge. Starting from now on this builder is capable to
remove such a path referenced in navigation network closing that route and
making Pawn to follow another way instead of constantly messing up in spot.
The simple way is to take in account named here Nodel and Node2 aka N1 and N2.
It will be a single path removed, that one from N1 to N2 leaving Path from N2

to N1 untouched - but which can be disconnected later, if it does exists. All
it needs 1is bool variable set to True and completing Names (under object
property for these) of said two nodes - Editor will complete entire definition

in the two TextBoxes. Log will say what reachSpec was there and removal
action. Path-Line still can be seen because reachSpec is not removed from map
but reference from nodes was removed as natively 1is doing TranslocDest in
games that do not include translocator. This option can definitely remove any
path direction and this way being capable to do real One-Way routes, for high
lifts where moron Bot is dying by jumping, ect, ect. Editor is not so friendly
with One-Way paths causing more or less PrunedPaths - shortcuts - which is

very stupid. If mapper wants a One-Way path he might have reasons for that -
builder does help here. For stock maps and plain servers solution would be a
Server-Actor helper in order to not screw stock maps but tweaking them in run-
time. I cannot say that bad reachSpec reference cannot be removed manually
when we are working at our map (some special case ?) but it's way easier to
record two names, writing them, hitting Dbutton and... Jjob done. Left
reachSpecs listed in navigation node are wrapped/defragmented after removing
the evil one.

May-June 2020 info: This feature implemented in builder PathsLinker done
in the same time addressing UGold227 (tested h) wversion, has the completed
feature at this chapter - it's really deleting evil reachSpec without any
recovery rewrapping/recounting all remaining reachSpecs. In this case map must
have actors compatible with UGold or else editing will be impossible. For MH
stage it's advisable some knowledge which MH actors must be removed and saved
elsewhere as text data, or else map won't load in UGold Editor, and adding
them back post editing/tweaking. MyLevels here need knowledge about "How To",
certain things are moved in 227 versions and not having any compatibility with
UT. Such MyLevel must be adapted with common codes. Example bTwoWay wvariable

different from UT to U227 - NavigationPoint wvs AlternatePath, and here code
needs GetPropertyText, SetPropertyText functions or such, UT had modifications
which are not 1in Unreal but later newer BotPack had them added... not

everything is 100% UT compatible over there anyway...

Setup for Editor:

U File goes to System folder, bmp icon file goes to editorres Folder from
System (inside UT game used for modding) or whatever internal UT path for U
files. After these file handling operations, proceed to edit
UnrealTournament.ini file (default install). We have to find Section involving
EditPackages, and adding after all those definitions a new one:

EditPackages=MapGarbage

like in this sample fragment:

EditPackages=TarquinBrushBuilders
EditPackages=RahnemBrushBuilders
EditPackages=DavesBrushBuilders
EditPackages=ExtendedBuilders
EditPackages=XC Core
EditPackages=XC_Engine
EditPackages=XC EditorAdds
EditPackages=MapGarbage

That's all, if vyour Editor is not badly screwed, you might see icon

involved for working with new builder - vyes, this 1s a custom so called
BrushBuilder but it doesn't do any Brush Building. The above task 1is not
required when we had a previous version installed - logically, the builder 1is

already configured.

Post Notes:

Note 1): Advanced mappers probably don't need such tool - or they do
because it's a debugger and helper.
Note 2): For uninstalling process, follow Installing steps in reverse.

Notes 3): Copyrights - All time I was "fascinated" about some Copyrights
for an utter GARBAGE called Map Editor aka whatever Map Editing app. For me

that is a toillete type application but it's needed in mapping - :/.

Given some said MapPurger done by Gizzy I was doing a similar thing for my
needs - and here it 1is, because I was reading about some ReplaceActor feature
mentioned in a description (FALSE Information) but which never existed... and

coding solution is similar.

Note 4): Enhancements and adds - Edit this tool and use it as you like...
a button pressed it's faster than editing actors.

Note 5): Some Update might come as needed - it won't mismatch anything.
This is a tool for help editing Maps, not for Servers/Players so I'm not gonna
spread 100 builder name types because are not needed multiple records but a
single advanced one it's always welcomed.

Note 6) This is not a mapping tutorial, neither a MH related one, but
it's a helper. If you have mapping experience not cube-drawing only, you might
understand the purpose of this tool and how does it helps. If you don't know
what Editor does having your mind into a complete fog, forget this tool. It is
addressing to help mapping not for learning mapping.

Note 7) All builder specific features used in the same time are proving
your insanity. All iterations and functions might go in opposite direction as
first thing, and then iterations limit will crash your Editor. Each function
of builder should be taken in account what it does and what it doesn't do.

Credits: In order of appearance: Epic, Mappers from Epic (with their
funky pile of crap) I tested pathing add-ons in such Levels, Gizzy sampling
such builder and "How To", Higor adding some light to my brain, Barbie helping
me to translate numbers in words, team updating old Unreal to whatever v 227
showing me that fly reachFlag can be used in UT but UT Editor is too dumb for
this planet, various UT mappers making me to write such tools.

Misc: I was informed that for MH fixes or nasty bugs detections there are
way too many factors in account. Perhaps future version will have more options
if worth efforts. Why ? Intention from now days 1s to go over engine
boundaries and making more sh!t maps or creating more copies of the same trash
and then for such works there are not too many things doable - to not forget
stripping brushes and leaving a pile of crap called map, bugged and making
fixing harder.

Perhaps some of these features are not needed in future (UT469) or they
won't work - or several "fixes" will spit out warnings, clearly this was done
and used in common UT Editor.

As an Extra-Feature, I loaded this builder in Editor from UnrealGold
updated at version 227h. It looks operational, here I will do extra-testing
another time, main purpose it's UT Editor.

