
PathsLinker
Unreal Editor Add-On Builder

Description:
This is an Unreal Editor custom builder tool which operates in Editor,

Tested and used in UnrealGold 227h. Stuff operated in simple maps might serve
UnrealTournament too, indirectly it's addressing UT maps as well due to extra
features from newer Unreal capable to solve problems in UT too with regard to
Navigation Network which might be a pain if Editor takes control over it. It's
your turn to take control with this tool.

Purpose:
This was one of my Scripting tools – I did not removed those features

because I might need them again some day, maybe...

Operation:
By clicking the Right Mouse button on that Added Icon from Editor (setup

explained later) you can open this Builder.
We have to mark True options which we want to launch and then clicking on
BUILD button shown. Once finished work or if some scroll visual problems from
Editor are showing up, just close Builder and re-Open it (right click – in
default OS's mouse setup) in case that you still need it. GUI-s from builders
in Unreal Editors (any) aren't fully updated all time. You have to click here
and there selecting deselecting fields for getting On-Screen update, else
values are update even if User Interface doesn't show this instantly.

Explained bool values:

1. bLogNewNav – It logs a script for causing spawning a selected
NavigationPoint – used in temporary maps for getting locations, I used this
for generating NavAdder plugins by "scripting" instantly hundreds of
Navigation Points.
2. bLogTweakPoint – here is generated an XC code for tweaking whatever Actor –
also I used it in scripting plugins.
3. bGenerateDecoUC – whatever static decoration class might cause generation
of a custom decoration which I used to spawn in clients, script is logged too.
4. bLogActors – logging map actors, this is first prototype which now is also
in MapGarbage builder by self-person.
5. bComputeDistance – if we have two actors selected we can get distance
probably in X Y coordinates, such script generates distance for a reachSpec.
Not accurate but... pretty usable.
6. bCheckDuplicates – this is primary prototype for checking duplicated
actors.
7. bFixDuplicates – combined with previous boolean value might fix or not
duplicates from a map, I don't know if Unreal needs this but in UT I needed
such things.

8. bLogBrushBuildLag – some maps are having geometry issues, usually when such
a map is being build, at a brush Editor takes a break, I'm not sure if is not
computing a BSP cut there, if we record that brush lagging build, we can input
number NumBrush and we can get around said lagger brush which we can examine
if is aligned or has various issues. Not always helpful but... I was trying
everything when I worked at screwed maps.
9. bTestReach – having two Navigation points selected we can see if area is
navigable in primary format, by walking. This might discover even BSP problems
causing an UnReachable path.
10. bCountReachSpecs – this is my primary counter for reachspecs embedded in
NavigationPointlist.

These were "options". Now we have newer things explained:

11. bDisconnectN1toN2 – This feature can disconnect a path going from a
defined name for a Navigation Point N1 which heads to another Navigation Point
N2. N1 and N2 can be written manually in builder box using names or
automatically captured only one by one using the two other booleans:

11.a bGet1stN1 – selected NavigationPoint will be dropped as N1 variable;
11.b bGet2ndN2 - selected NavigationPoint will be dropped as N2 variable.

After completion of N1 N2 fields – if we want to see them we must refresh GUI
by inspecting them with some click and then pressing build with said bool
marked True. Path from N1 to N2 will be DELETED and reachSpecs re-counted –
keep this in mind.

12. bConnectPathsFor – it does a connection between two points as N1 and N2 –
more or less manually set or captured as described below. Here is generated a
reachSpec or two as follows:

12.a RFlags – Means desired reachFlags for reachspec which will be
created: 1 – Walk, 2 – Fly, 4 - Swim, 8 – Jump. A jumpy route needs walk and
jump, which means 1 + 8 = 9. RFlags value must be 9 in such a case. Lifts and
Teleporters are using 32. If you want other flags I do not have any fault for
what you do, it's your problem.

12.b CRadius – maximum CollisionRadius used by Pawn user of this path aka
reachSpec.

12.c CHeight – maximum CollisionHeight used by Pawn user of this path aka
reachSpec.

Note: We might want to not set these lower than 20 radius and 40 height
for Bots and us, testers. I think zero means that everyone will get through
this path – check it.

12.d bTwoWay – means that another reachSpec is created on the way back
from N2 to N1 as well, not only from N1 to N2. Unreal 227 shows two lines or
one accordingly. Distance between points specified in reachSpec is computed
automatically in X Y axis, it works anyway.
13. bModifyReachSpec – if we did something wrong at a previous reachspec, we
can modify said reachSpec if we know index (logged previously), which is set
as NSpec variable. Modifications available are taken from above values
reachFlags/Collision data set in boxes. Only a reachSpec is modified at time
so the other one bTwoWay has no efect here.
14. bDeleteReachSpec – here we can remove a reachSpec from map or a wrong one
which is proving later as being disturbing for pawn's movement.

NOTES:
1 - Because these stunts are a bit... entertaining, my advice is to have one
type of operation per Editing session. Which means that we are only doing
ReachSpecs in a session and we are removing ones in another session. I won't
try to explain in a few words what's happening at C++ Level, but this is how I
do things in order to not do damage or crash Editor with work UnSaved. Garbage
Objects are purged at quiting Editor, stacking objects over future garbage

ones might not be helpful – I believe otherwise here might be issues.
Some Evil reachSpec in whatever map can be removed by only knowing index
number. Usually I take the number from MapGarbage. After removing a reachSpec
I will want to regain data for other move because each reachSpec deleted will
recount remaining ones. Here Builder should recount them as well in references
from All Navigation points actors from map.

2 – We can attach a new PathNode without to screw a reworked Path-Net. This
requires adding new PathNode in NavigationPointlist – using MapGarbage. We
disconnect all Array and then we reconnect it. PathNodes placed in good areas
are linked in newer created Array. After that we can add reachspecs – paths
lines to/from new PathNodes.

3 – We can change or add reachSpecs with any ReachFlags we want in some
already done NavigationNetwork if it's bad or not connected, here we can
create aerial paths, swim paths and even combined when zones are mixed and
pawns should use those paths. This means that we can build a Path-Net as we
want discarding those angled buggers or too longer jumps in seconds.

4. - If map has PrunedPaths (majority have these) – usually I'm using
XC_EditorAdds from XC_Engine done in UT because this is not creating such
useless invisible paths - perhaps some problems might be expected. Keep a
backup of original map. After removing a path, it is advisable to check in a
future session two navigation points connected if are referenced correctly by
using MapGarbage and "bShowSpecs" option for a selected Node and read
connections. If data is fake, then network has been damaged due to some lousy
thing from map or some other reason. Usually a simple path-net created with
XC_EditorAdds from XC_Engine in UT is easier to adjust later in Unreal for
getting a simple and a good Paths Network without heavy to follow paths.

Setup:
U File goes in System folder. BMP file is icon for button going in

editorres folder. In file Unreal.ini we need to find EditPackages variables.
There we can complete as last position or whatever:

EditPackages=PathsLinker

Here is the setup. Unistalling means reversing install steps. Builder
uses new functions from Unreal which UT'99 doesn't have, so don't try it in UT
because it won't work. If map has common assets and can be opened in Unreal,
here is editing environment.

