
Unreal Tournament Package File Format
by Sapphire

“Abandon all hope ye who try to parse this file format.”

—Tim Sweeney, Unreal Packages

After having recently finished writing a basic JavaScript plugin to parse this file format, I felt a little frustrated at what I considered to be the lack of easily understandable
information when I began researching this topic.

Of the few resources out there, I couldn't find any which actually go through an existing package step by step, which I think would have helped me a lot when starting
out. As a result, I've decided to write this brief guide in the hope that it may help someone.

As stated, there are a few existing guides, some parts of which I have copied/paraphrased here; the rest I have written myself.

The package used in this example is CTF‐Face, aka "Facing Worlds".

Contents

1. Overview
2. Package Header
3. Name Table
4. Import Table
5. Export Table
6. Package Flags
7. Object Flags
8. Object References
9. Compact Index Format

10. References

Overview

The UT package format has the following structure:

Section Description

Package Header Contains information about the package, such as the size and offset of tables within the package.

Name Table Contains a list of human‐readable Unreal names ﴾which correspond to the UnrealScript "Name" data type﴿.

Import Table Contains a list of objects in other packages which this package refers to.

Export Table Contains a list of objects contained in ﴾aka "exported by"﴿ this package.

Data The actual package data itself ﴾textures, sounds, brushes, scripts, etc﴿.

Long int/DWORD data types are signed, 4 bytes long, and stored in little‐endian format.

Package Header

The package header always begins at offset 0. If the package version is less than 68, "Heritage" count/offset values may also be present instead of the GUID.

Offset Size ﴾bytes﴿ Name Description

0 0x00 4 Signature Always 0x9E2A83C1.

4 0x04 4 File Version Version of the engine which saved the file.

8 0x08 4 Package Flags Bitflags describing the package ﴾see Package Flags section﴿.

12 0x0C 4 Name Count Number of names stored in the name table. Always >= 0.

16 0x10 4 Name Offset Offset into the file of the name table, in bytes.

20 0x14 4 Export Count Number of exported objects in the export table. Always >= 0.

24 0x18 4 Export Offset Offset into the file of the export table, in bytes.

28 0x1C 4 Import Count Number of imported objects in the import table. Always >= 0.

32 0x20 4 Import Offset Offset into the file of the import table, in bytes.

36 0x24 16 GUID Globally unique identifier; a unique number used for caching and avoiding package naming/version conflicts.

https://github.com/bunnytrack/UTPackage.js/
https://en.wikipedia.org/wiki/Endianness

Offset Size ﴾bytes﴿ Name Description36 16 GUID Globally unique identifier; a unique number used for caching and avoiding package naming/version conflicts.

52 0x34 4 Generation Count Unknown.

‐ ‐ 4 Generation n Export Count ‐

‐ ‐ 4 Generation n Name Count ‐

Example

The package header for CTF‐Face is shown below. Hover over the table rows to highlight the corresponding bytes within the raw header data.

Name Value

Signature 0xC1832A9E

File Version 0x44000000 → 68

Package Flags 0x01000000 → PKG_AllowDownload

Name Count 0x43050000 → 1,347

Name Offset 0x40000000 → 64

Export Count 0x31040000 → 1,073

Export Offset 0x2AAD0E00 → 961,834

Import Count 0x8F000000 → 143

Import Offset 0xDBA70E00 → 960,475

GUID 0x642E72689581D311A26B00E0811032D2*

Generation Count 0x01000000 → 1

Export Count 0x31040000 → 1,073

Name Count 0x43050000 → 1,347

Fig. 1—Package header data for CTF‐Face.unr; 64 bytes total.

*When downloading a package in‐game, files are saved using the GUID as their filename. With each of the four long int values read in little‐endian format, CTF‐Face
would be saved as "68722E6411D38195E0006BA2D2321081.uxx".

Name Table

The name table contains all unique object names within the package. The structure is as follows:

Name Size ﴾bytes﴿ Description

Object Name Length 1 String length of the null‐terminated object name ﴾including the null byte﴿, in bytes.

Object Name n The name of the object. Objects may share names ﴾e.g. "Texture"﴿.

Object Flags 4 Bitflags describing the object ﴾see Object Flags section﴿.

Example

As indicated in the package header, the name table for CTF‐Face begins at byte 64. The first five values are shown below:

0x00 C1
00

83
01

2A
02

9E
03

44
04

00
05

00
06

00
07

01
08

00
09

00
10

00
11

43
12

05
13

00
14

00
15

0x10 40 00 00 00 31 04 00 00 2A AD 0E 00 8F 00 00 00

0x20 DB A7 0E 00 64 2E 72 68 95 81 D3 11 A2 6B 00 E0

0x30 81 10 32 D2 01 00 00 00 31 04 00 00 43 05 00 00

https://en.wikipedia.org/wiki/C_data_types#Main_types

#
Offset Object Name Length Object Name Object Flags

Hex Dec Hex Dec Hex Value Hex Value

1 0x40 64 0x05 5 0x4E6F6E65 "None" 0x10040704

RF_Public
RF_NeedLoad
RF_HighlightedName
RF_LoadForEdit
RF_ErrorShutdown

2 0x4A 74 0x07 7 0x566563746F72 "Vector" 0x10040704

RF_Public
RF_NeedLoad
RF_HighlightedName
RF_LoadForEdit
RF_ErrorShutdown

3 0x56 86 0x08 8 0x4F555453494445 "OUTSIDE" 0x10000700
RF_NeedLoad
RF_HighlightedName
RF_ErrorShutdown

4 0x63 99 0x0C 12 0x506F696E74526567696F6E "PointRegion" 0x10000700
RF_NeedLoad
RF_HighlightedName
RF_ErrorShutdown

5 0x74 116 0x07 7 0x526567696F6E "Region" 0x10000700
RF_NeedLoad
RF_HighlightedName
RF_ErrorShutdown

Fig. 2—Name table data for CTF‐Face.unr; 64 bytes are shown, representing five name table entries.

Import Table

The import table contains n entries, where n is the import count specified in byte 28 of the header. Each table entry is structured as follows:

Name Data Type Description

Class Package Compact Index* Name table index for the package which this object's class object resides in.

Class Name Compact Index Name table index for this object's class.

Package Index** Long Int The index of the package this object resides in. This can be an index into the import table itself, or NULL.

Object Name Compact Index Name table index for this object.

*See the Compact Index section to understand how values are ascertained from this data type.

**See Object References.

Example

The first five entries of CTF‐Face's import table are as follows:

#
Class Package Class Name Package Index Object Name

Bytes Value Bytes Value Bytes Value Bytes Value

1 0x610A 673 → "Core" 0x6B06 427 → "Package" 0x00000000 NULL 0x7602 182 → "Engine"

2 0x610A 673 → "Core" 0x6B06 427 → "Package" 0x00000000 NULL 0x440E 900 → "SkyCity"

3 0x610A 673 → "Core" 0x6B06 427 → "Package" 0x00000000 NULL 0x4112 1,153 → "ShaneChurch"

4 0x610A 673 → "Core" 0x700A 688 → "Class" 0xFFFFFFFF ‐1 → 0 → "Engine" 0x0C 12 → "Brush"

5 0x610A 673 → "Core" 0x6B06 427 → "Package" 0xFEFFFFFF ‐2 → 1 → "SkyCity" 0x3B 59 → "Base"

0x40 05
00

4E
01

6F
02

6E
03

65
04

00
05

10
06

04
07

07
08

04
09

07
10

56
11

65
12

63
13

74
14

6F
15

0x50 72 00 10 04 07 04 08 4F 55 54 53 49 44 45 00 10

0x60 00 07 00 0C 50 6F 69 6E 74 52 65 67 69 6F 6E 00

0x70 10 00 07 00 07 52 65 67 69 6F 6E 00 10 00 07 00

Fig. 3—Import table data for CTF‐Face.unr; 48 bytes are shown, representing five objects.

Export Table

As with the import table, the export table contains n entries, where n is the export count specified in byte 20 of the header. Each table entry is structured as follows:

Name Data Type Description

Class Index Compact Index Points to the class object describing the class of this object.

Super Index Compact Index If this is a field ﴾a struct, class, property, or another field subclass﴿, points to the superfield object of the field.

Package Index Long Int Points to the package object describing the package this object resides in.

Object Name Compact Index This object's name.

Object Flags Long Int Bitflags describing the object.

Serial Size Compact Index Size of the object's serialised data, in bytes.

Serial Offset Compact Index If >= 0, offset into this file of the start of the object's serialised data.

Example

The first three entries of CTF‐Face's export table are as follows:

#
Class Index Super Index Package Index Object Name Object Flags Serial Size Serial Offset

Bytes Value Bytes Value Bytes Value Bytes Value Bytes Value Bytes Value Bytes Value

1 0xF801 ‐120 →
"LevelInfo" 0x00 NULL 0x00000000 NULL 0x6F02 175 →

"LevelInfo0" 0x01000702

RF_Unreachable
RF_NeedLoad
RF_HighlightedName
RF_NeedPostLoad

0x4E04 270
bytes 0x6BB302

19,691
or
0x4CEB

2 0x8E ‐14 →
"Light" 0x00 NULL 0x00000000 NULL 0x7903 249 →

"Light0" 0x01000702

RF_Transactional
RF_Public
RF_Suppress
RF_InEndState
RF_LoadForClient
RF_Native
RF_ErrorShutdown
RF_DebugPostLoad

0x5001 80
bytes 0x79B702

19,961
or
0x4DF9

3 0x8E ‐14 →
"Light" 0x00 NULL 0x00000000 NULL 0x7C03 252 →

"Light5" 0x01000702

RF_Transactional
RF_Public
RF_Suppress
RF_InEndState
RF_LoadForClient
RF_Native
RF_ErrorShutdown
RF_DebugPostLoad

0x5001 80
bytes 0x49B902

20,041
or
0x4E49

Fig. 4—Export table data for CTF‐Face.unr; 52 bytes are shown, representing three objects.

Package Flags

0x0EA7DB 61
00

0A
01

6B
02

06
03

00
04

00
05

00
06

00
07

76
08

02
09

61
10

0A
11

6B
12

06
13

00
14

00
15

0x0EA7EB 00 00 44 0E 61 0A 6B 06 00 00 00 00 41 12 61 0A

0x0EA7FB 70 0A FF FF FF FF 0C 61 0A 6B 06 FE FF FF FF 3B

0x0EAD2A F8
00

01
01

00
02

00
03

00
04

00
05

00
06

6F
07

02
08

01
09

00
10

07
11

02
12

4E
13

04
14

6B
15

0x0EAD3A B3 02 8E 00 00 00 00 00 79 03 01 00 07 02 50 01

0x0EAD4A 79 B7 02 8E 00 00 00 00 00 7C 03 01 00 07 02 50

0x0EAD5A 01 49 B9 02 ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐

Package Flags

Packages may have several "flags" or properties, as detailed in the table below. The package flags value for CTF‐Face is 0x01 which corresponds to the
PKG_AllowDownload flag.

Name Value Description

PKG_AllowDownload 0x0001 Allow downloading package.
“[This should be] disabled for game publisher distribution (so that people aren't able to download retail files freely).”

PKG_ClientOptional 0x0002 Purely optional for clients.

PKG_ServerSideOnly 0x0004
Only needed on the server side.
“For example, the IpDrv.u package is tagged as ServerSideOnly, because it contains classes like the server‐uplink which only need to run
on the server, and will be frequently updated.”

PKG_BrokenLinks 0x0008 Loaded from linker with broken import links.

PKG_Unsecure 0x0010 Not trusted.

PKG_Need 0x8000 Client needs to download this package.

A package's flags can be read by performing a bitwise AND on its flag value with each of the pre‐defined flag values. For example, if a package had a package flag of 11
﴾or 0x0B in hex﴿:

0x0B & 0x01 // 1 ‐ PKG_AllowDownload flag present
0x0B & 0x02 // 2 ‐ PKG_ClientOptional flag present
0x0B & 0x04 // 0 ‐ PKG_ServerSideOnly flag NOT present
0x0B & 0x08 // 1 ‐ PKG_BrokenLinks flag present

The PKG_Unsecure and PKG_Need flags aren't present as their values are greater than 0x0B.

Object Flags

As with the package file itself, objects ﴾i.e. the data contained within the package﴿ can have several flags as well:

Name Value Description

RF_Transactional 0x00000001 Object is transactional ﴾i.e. supports editor undo/redo﴿.

RF_Unreachable 0x00000002 Object is not reachable on the object graph.

RF_Public 0x00000004 Object is visible outside its package ﴾i.e. can be referenced by external package files﴿.

RF_TagImp 0x00000008 Temporary import tag in load/save.

RF_TagExp 0x00000010 Temporary export tag in load/save.

RF_SourceModified 0x00000020 Modified relative to source files.

RF_TagGarbage 0x00000040 Check during garbage collection.

RF_NeedLoad 0x00000200 During load, indicates object needs loading.

RF_HighlightedName 0x00000400 A hardcoded name which should be syntax‐highlighted.

RF_InSingularFunc 0x00000800 In a singular function.

RF_Suppress 0x00001000 Suppressed log name.

RF_InEndState 0x00002000 Within an EndState call.

RF_Transient 0x00004000 Can't be saved or loaded.

RF_PreLoading 0x00008000 Data is being preloaded from file.

RF_LoadForClient 0x00010000 In‐file load for client.

RF_LoadForServer 0x00020000 In‐file load for server.

RF_LoadForEdit 0x00040000 In‐file load for edit.

RF_Standalone 0x00080000 Keep object around for editing even if unreferenced.

RF_NotForClient 0x00100000 Don't load this object for the game client.

RF_NotForServer 0x00200000 Don't load this object for the game server.

RF_NotForEdit 0x00400000 Don't load this object for the editor.

RF_Destroyed 0x00800000 Object Destroy has already been called.

RF_NeedPostLoad Object needs to be postloaded.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Bitwise_Operators#Bitwise_AND

Name Value Description

RF_NeedPostLoad 0x01000000 Object needs to be postloaded.

RF_HasStack 0x02000000 Has execution stack.

RF_Native 0x04000000 Native ﴾UClass only﴿.

RF_Marked 0x08000000 Marked ﴾for debugging﴿.

RF_ErrorShutdown 0x10000000 ShutdownAfterError called.

RF_DebugPostLoad 0x20000000 For debugging Serialize calls.

RF_DebugSerialize 0x40000000 For debugging Serialize calls.

RF_DebugDestroy 0x80000000 For debugging Destroy calls.

Object References

Objects within a package may reference other objects. To differentiate between an object in the export table and the import table, a positive value is given for export
entries, and negative for the import. To "convert" a negative value to a usable index, remove the negative sign and subtract 1 ﴾e.g. ‐5 → 5 → 4﴿. This can be done easily
using the bitwise NOT operator.

Example

Part of the decoration in the red base uses a rune texture:

Fig. 5—Red team base in CTF‐Face; texture highlighted in red is found as an object in the import table.

The name of this texture is "runeSgn2", part of the "Deco" group within the texture package SkyCity. This object's package index value is ‐72, meaning it's index #71 in
the import table. This is the Deco object, which in turn has a package index of ‐2, i.e. the SkyCity object. As SkyCity is its own package ﴾SkyCity.utx﴿, this object has a
package index of 0 or NULL, i.e. it has no "parent" package.

Compact Index Format

Tim Sweeney, the format's creator, states “Compact indices exist so that small numbers can be stored efficiently”.

Rather than storing small numbers in a fixed 4‐byte "long int"/DWORD, the compact index format is variable in size, ranging from 1‐5 bytes. A comparison highlighting
the difference in size is shown below:

Value Long Int/DWORD Compact Index Difference

1 0x00000001 0x01 ‐3 bytes

100 0x00000064 0x6401 ‐2 bytes

10,000 0x00002710 0x509C01 ‐1 byte

10,000,000 0x00989680 0x40DAC409 0 bytes

1,000,000,000 0x3B9ACA00 0x40A8D6B907 +1 byte

Converting a value to a compact index is achieved by using 1‐2 bits of each byte to store information about the value, and the remaining bits to store the value itself.

The first byte of a compact index is structured as follows:

7 6 5 4 3 2 1 0

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Bitwise_Operators#Bitwise_NOT
https://bunnytrack.net/ut-package-format/images/face-rune.jpg

Bits 6 and 7 are essentially used as flags:

when bit 6 is set, the value continues into next byte;
when bit 7 is set, the value is negative.

All other bytes, if any, are structured as follows:

The maximum value that can be stored is 0x7FFFFFFF ﴾2,147,483,647﴿ as defined in the Object class.

Example

This example will show how to represent the number ‐100 as a compact index.

The absolute value, 100, is represented in binary as 01100100. As bits 6 and 7 are required to indicate continuation and the negative sign, the last two bits ﴾0 and 1﴿ have
to be moved along to the next byte:

Put back together, the binary value is now 0000000111100100 or 0xE401 in hex, saving two bytes compared to a regular long int value.

Interactive Example

Enter a number below to see the value as represented by the compact index format.

0

DWORD ﴾4 bytes﴿ Compact Index

Byte # Decimal Hexadecimal Binary

References

1. Unreal Packages by Tim Sweeney, 1999.
2. Unreal Tournament Package File Format, Version 1.6 by Antonio Cordero Balcázar, 2001.
3. Package File Format by Jesco, 2003. Available from http://www.unrealtexture.com/Unreal/Downloads/3DEditing/UnrealEd/Tutorials/unrealwiki‐offline/package‐file‐

format.html

Page last updated: 8th March 2020

0

+/‐

0

Cont.

0

32

0

16

0

8

0

4

0

2

0

1

0

7

Cont.

0

6

64

0

5

32

0

4

16

0

3

8

0

2

4

0

1

2

0

0

1

1 1

+/‐

1

Cont.

1

32

0

16

0

8

1

4

0

2

0

1

2 0

Cont.

0

64

0

32

0

16

0

8

0

4

0

2

1

1

https://github.com/bunnytrack/UT99/blob/master/Core/Object.uc#L99
http://www.unrealtexture.com/Unreal/Downloads/3DEditing/UnrealEd/Tutorials/unrealwiki-offline/package-file-format.html
http://www.unrealtexture.com/Unreal/Downloads/3DEditing/UnrealEd/Tutorials/unrealwiki-offline/package-file-format.html

